Abstract Title:

Additive effect of walnut and chokeberry on regulation of antioxidant enzyme gene expression and attenuation of lipid peroxidation in d-galactose-induced aging-mouse model.

Abstract Source:

Nutr Res. 2018 Oct 4. Epub 2018 Oct 4. PMID: 30446253

Abstract Author(s):

Eun-Kyung Song, Hyunjin Park, Hyun-Sook Kim

Article Affiliation:

Eun-Kyung Song


Studies have highlighted the association between the cellular damage caused by reactive oxygen species and aging. The reducing sugar d-galactose causes aging-related changes and oxidative stress. Lipids are the first target of free radicals, and lipid peroxidation is related to aging. Walnut (Juglans regia Chandler) kernel contains antioxidant phenolic compounds, and chokeberry (Aronia melanocarpa) is one of the richest sources of polyphenols, including anthocyanins, among other fruits. Polyphenols from chokeberry exhibit antioxidant and anti-inflammatory activities. In this study, the additive antioxidative effect of walnut and chokeberry mixture was evaluated by oxidative stress index in d-galactose-induced aging model. Thirty-five Balb/c mice (8 weeks old) were divided into following five groups (n = 7 in each group): normal control (C), d-galactose control (D), d-galactose with chokeberry diet (CH), d-galactose with walnut diet (W), and d-galactose with walnut and chokeberry mixture diet (WCH). In all treatment diets groups, the levels of serum, hepatic, and kidney malonaldehyde were significantly lower than D group and the levels were approaching to control level. Moreover, the kidney malondialdehyde levels were significantly lower in WCH group compared with the control group. This study also confirmed the activities of antioxidant enzymes in liver, as the levels of superoxide dismutase, and glutathione peroxidase were significantly increased in CH group compared to in W or CH groups. The results of this study supported the additive effect of walnut and chokeberry on increment of antioxidant enzyme gene expression in liver and consequently the attenuation of lipid peroxidation in serum, liver, and kidney in d-galactose-induced aging-mouse model. Further studies are needed to investigate the detailed mechanism underlying the additive antioxidative effects in various tissues.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.