Article Publish Status: FREE
Abstract Title:

Alantolactone, a natural sesquiterpene lactone, has potent antitumor activity against glioblastoma by targeting IKKβ kinase activity and interrupting NF-κB/COX-2-mediated signaling cascades.

Abstract Source:

J Exp Clin Cancer Res. 2017 07 12 ;36(1):93. Epub 2017 Jul 12. PMID: 28701209

Abstract Author(s):

Xun Wang, Zhenlong Yu, Chao Wang, Wei Cheng, Xiangge Tian, Xiaokui Huo, Yan Wang, Chengpeng Sun, Lei Feng, Jinshan Xing, Yulong Lan, Dongdong Sun, Qingjuan Hou, Baojing Zhang, Xiaochi Ma, Bo Zhang

Article Affiliation:

Xun Wang


BACKGROUND: Glioblastoma multiforme (GBM) is one of the most refractory and palindromic central nervous system (CNS) neoplasms, and current treatments have poor effects in GBM patients. Hence, the identification of novel therapeutic targets and the development of effective treatment strategies are essential. Alantolactone (ATL) has a wide range of pharmacological activities, and its anti-tumor effect is receiving increasing attention. However, the molecular mechanism underlying the anti-GBM activity of ATL remains poorly understood.

METHODS: The biological functions of ATL in GBM cells were investigated using migration/invasion, colony formation and cell cycle/apoptosis assays. The localization of nuclear factor kappa B (NF-κB) p50/p65 and its binding to the cyclooxygenase 2 (COX-2) promoter were determined using confocal immunofluorescence, a streptavidin-agarose pulldown assay and a chromatin immunoprecipitation (ChIP) assay. IKKβ kinase activity was determined using a cell IKKβ kinase activity spectrophotometry quantitative detection kit and a molecular docking study. LC-MS/MS analysis was performed to determine the ability of ATL to traverse the blood-brain barrier (BBB). The in vivo anti-tumor efficacy of ATL was also analyzed in xenografted nude mice. Western blot analysis was performed to detect the protein expression levels.

RESULTS: ATL significantly suppressed the growth of GBM in vivo and in vitro. ATL significantly reduced the expression of COX-2 by inhibiting the kinase activity of IKKβ by targeting the ATP-binding site and then attenuating the binding of NF-κB to the COX-2 promoter region. Furthermore, ATL induced apoptosis by activating the cytochrome c (cyt c)/caspase cascade signaling pathway. Moreover, ATL could penetrate the BBB.

CONCLUSIONS: ATL exerts its anti-tumor effects in human GBM cells at least in part via NF-κB/COX-2-mediated signaling cascades by inhibiting IKKβ kinase activity. ATL, which is a natural small molecule inhibitor, is a promising candidate for clinical applications in the treatment of CNS tumors.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.