Abstract Title:

Ameliorative Effect of Hesperidin Against Motion Sickness by Modulating Histamine and Histamine H1 Receptor Expression.

Abstract Source:

Neurochem Res. 2019 Nov 28. Epub 2019 Nov 28. PMID: 31782104

Abstract Author(s):

Uma Maheswari Deshetty, Anand Tamatam, Monojit Bhattacharjee, Ekambaram Perumal, Gopalan Natarajan, Farhath Khanum

Article Affiliation:

Uma Maheswari Deshetty


Motion sickness (MS) is the visceral discomfort caused due to contradicting visual and vestibular inputs to the brain leading to nausea and vomiting. Sensory conflict theory which proves histamine elevations as the primary reason for MS provides a path for an effective pharmaco-therapy. We aimed to evaluate the anti-MS effect of hesperidin (HSP) by modulating histamine and histamine receptor H1 (HRH1) expression. The inhibitory effect of HSP on histamine release was studied in KU812 cells treated with 10µM calcium ionophore. The in vivo anti-MS effect of HSP was evaluated in Balb/c mice. Thirty six mice were divided into six groups namely, normal control (NC, no rotation), hesperidin at 80 mg/kg body weight control (HSP80, no rotation), motion sickness (MS, rotation induced), dimenhydrinate (Standard drug) at 20 mg/kg body weight + rotation (STD + MS), hesperidin at 40 mg/kg body weight + rotation (HSP40 + MS) and hesperidin at 80 mg/kg body weight + rotation (HSP80 + MS). Hypothalamus and brainstem samples were analysed for histamine levels and HRH1 expression by RT-PCR, Western blot and immunohistochemistry analysis. Calcium ionophore treated KU812 cells significantly increased histamine release when compared to control cells. Pre-treatment with HSP inhibited histamine, HRH1 mRNA and protein expression. Histamine, HRH1 mRNA and protein expression in hypothalamus and brainstem samples of MS group increased significantly when compared to the NC group. Pre-treatment with HSP significantly reduced histamine, HRH1 mRNA and protein expression. Thus, indicating that HSP has a potent anti- MS effect by decreasing the elevated levels of histamine, HRH1 mRNA and protein expression in hypothalamus and brainstem regions.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.