n/a
Article Publish Status: FREE
Abstract Title:

Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model.

Abstract Source:

Hum Reprod. 2009 Mar ;24(3):608-18. Epub 2008 Dec 16. PMID: 19088106

Abstract Author(s):

H Xu, W T Lui, C Y Chu, P S Ng, C C Wang, M S Rogers

Article Affiliation:

H Xu

Abstract:

BACKGROUND: The development of new blood vessels plays an essential role in growth and survival of endometriosis. Epigallocatechin gallate (EGCG) from green tea has powerful anti-angiogenic properties and our aim was to evaluate these properties in experimental endometriosis.

METHODS AND RESULTS: Eutopic endometrium from endometriosis patients was transplanted s.c. to severely compromised immunodeficient mice, randomly treated i.p. with EGCG (anti-angiogenic and -oxidant), Vitamin E (a non-angiogenic antioxidant) or saline for 2 weeks. The endometrial implant, including adjacent host outer skin and subcutaneous layers plus inner abdominal muscle and peritoneum, was collected. New microvessels were determined by species-specific immunohistochemistry. Angiogenic factors in lesions and abdominal muscle were detected by quantitative real-time PCR. Apoptosis was studied by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling and quantitative real-time PCR. In saline control, endometrial implants developed new blood vessels with proliferating glandular epithelium and were tightly adhered to host subcutaneous and abdominal muscle layers. After EGCG, endometriotic lesions were smaller than control (P<0.05), and glandular epithelium was smaller and eccentrically distributed. Angiogenesis in lesions from the implant and adjacent tissues was under-developed, and microvessel size and density were lower (both P<0.01) than control. mRNA for angiogenic vascular endothelial growth factor A, but not hypoxia inducible factor 1, alpha subunit, was significantly down-regulated in lesions after EGCG (P<0.05). In addition, apoptosis in the lesions was more obvious, and nuclear factor kappa B and mitogen activated protein kinase 1 mRNA levels were up-regulated (P<0.05) after EGCG treatment. No differences were observed with Vitamin E treatment.

CONCLUSIONS: EGCG significantly inhibits the development of experimental endometriosis through anti-angiogenic effects.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.