Abstract Title:

Anti-inflammatory Activity of Ursolic Acid in MPTP-Induced Parkinsonian Mouse Model.

Abstract Source:

Neurotox Res. 2019 Apr 23. Epub 2019 Apr 23. PMID: 31016688

Abstract Author(s):

Sachchida Nand Rai, Walia Zahra, Saumitra Sen Singh, Hareram Birla, Chetan Keswani, Hagera Dilnashin, Aaina Singh Rathore, Rajan Singh, Rakesh K Singh, Surya Pratap Singh

Article Affiliation:

Sachchida Nand Rai


Neuroinflammation plays an important role in the progression of Parkinson's disease (PD) and hence may represent a target for treatment. The drugs used currently for PD only provide symptomatic relief and have adverse effects in addition to their inability in preventing degeneration of neurons. Flavonoids show potent antioxidant and anti-inflammatory activities which is very valuable for the health of human beings. Thus, in the present study, we have tried to explore the anti-inflammatory activity of orally given ursolic acid (UA) (25 mg/kg bwt), a pentacyclic triterpenoid in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mouse model. Significant severe oxidative stress and biochemical alterations have been seen in Parkinsonian mice after MPTP intoxication. Whereas, UA administration has significantly rescued the harmful consequence of MPTP intoxication. Ionized calcium-binding adaptor molecule 1 (Iba1), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor-κB (NF-κB) were seen to be altered in the substantia nigra pars compacta (SNpc) of MPTP-intoxicated mice through immunohistochemical studies. The changes in the expression level of these parameters primarily suggest increased inflammatory responses in MPTP-intoxicated mice as compared with the control. However, UA have significantly reduced these inflammatory parameters (Iba1 and TNF-α) along with transcription factor NF-κB,which regulates these inflammatory parameters and thus have inhibited MPTP-induced neuroinflammation. The immunoreactivity of tyrosine hydroxylase (TH) was considerably increased by UA treatment in the SNpc of Parkinsonian mice. The neuroinflammation and neurodegeneration along with impairments in biochemical and behavioral parameters were found to be reversed on treatment with UA. Thus, UA has shown potent anti-inflammatory activity by preventing the degeneration of dopaminergic neurons from MPTP-induced Parkinsonian mice.

Study Type : Animal Study

Print Options

Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.