Abstract Title:

Anti-oxidant effect of bergamot polyphenolic fraction counteracts doxorubicin-induced cardiomyopathy: Role of autophagy and c-kitCD45CD31cardiac stem cell activation.

Abstract Source:

J Mol Cell Cardiol. 2018 Jun ;119:10-18. Epub 2018 Apr 12. PMID: 29654879

Abstract Author(s):

Cristina Carresi, Vincenzo Musolino, Micaela Gliozzi, Jessica Maiuolo, Rocco Mollace, Saverio Nucera, Alessia Maretta, Domenico Sergi, Saverio Muscoli, Santo Gratteri, Ernesto Palma, Francesca Bosco, Caterina Giancotta, Carolina Muscoli, Fabiola Marino, Iolanda Aquila, Daniele Torella, Franco Romeo, Vincenzo Mollace

Article Affiliation:

Cristina Carresi


Doxorubicin (DOXO) is one of the most widely used antineoplastic drugs. Despite its highly beneficial effects against several malignancies, the clinical use of DOXO is often associated to cardiomyopathy that leads to congestive heart failure. Here we investigated the antioxidant and cardioprotective effects of a polyphenol-rich fraction of citrus bergamot (BPF), in DOXO-induced cardiac damage in rats. Moreover, we evaluated the effect of BPF on cardiomyocyte survival and resident endogenous cardiac stem/progenitor cell (eCSC) activation. Adult male Wistar rats were i.p. injected with saline (serving as controls, CTRL, n = 10), BPF (20 mg/kg daily for 14 consecutive days, n = 10), DOXO (6 doses of 2,5 mg/Kg from day 1 to day 14, n = 10), and DOXO + BPF (n = 10). Animals were then sacrificed 7 days later (i.e., at 21 days). DOXO administration reduced cardiac function at 21 days, an adverse effect significantly attenuated in animals receiving DOXO + BPF. No changes were detected in rats receiving just saline or BPF alone. The cardioprotective effect of BPF on DOXO acute toxicity was also associated with a significant antioxidant effect coupled with protective autophagy restoration, and attenuation of cardiomyocyte apoptosis and reactive hypertrophy. Finally, treatment of rats with BPF prevented eCSCs attrition by DOXO which was followed by a limited but significant increase of newly-formed BrdUcardiomyocytes. In conclusion, BPF reduces DOXO-induced cardiotoxicity by counteracting reactive oxygen species (ROS) overproduction, thereby restoring protective autophagy and attenuating cardiomyocyte apoptosis and pathologic remodeling. This beneficial effects on the early toxicity of DOXO is associated with enhanced CSCs survival and regenerative potential. Overall these data point to a potential clinical role by diet supplementation with polyphenol-rich fraction of citrus bergamot in counteracting antracycline-induced cardiomyopathy.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.