n/a
Article Publish Status: FREE
Abstract Title:

The anticancer mechanism investigation of Tanshinone IIby pharmacological clustering in protein network.

Abstract Source:

BMC Syst Biol. 2018 10 29 ;12(1):90. Epub 2018 Oct 29. PMID: 30373594

Abstract Author(s):

Yan-Feng Cao, Shi-Feng Wang, Xi Li, Yan-Ling Zhang, Yan-Jiang Qiao

Article Affiliation:

Yan-Feng Cao

Abstract:

BACKGROUND: Cancer is the second most common cause of death globally. The anticancer effects of Tanshinone II(Tan II) has been confirmed by numerous researches. However, the underlying mechanism remained to be integrated in systematic format. Systems biology embraced the complexity of cancer; therefore, a system study approach was proposed in the present study to explore the anticancer mechanism of Tan IIbased on network pharmacology.

METHOD: Agilent Literature Search (ALS), a text-mining tool, was used to pull protein targets of Tan II. Then, pharmacological clustering was applied to classify obtained hits, the anticancer module was analysed further. The top ten essential nodes in the anticancer module were obtained by ClusterONE. Functional units in the anticancer module were catalogued and validated by Gene Ontology (GO) analysis. Meanwhile, KEGG and Cell Signalling Technology Pathway were employed to provide pathway data for potential anticancer pathways construction. Finally, the pathways were plotted using Cytoscape 3.5.1. Furthermore, in vitro experiments with five carcinoma cell lines were conducted.

RESULTS: A total of 258 proteins regulated by Tan IIwere identified through ALS and were visualized by protein network. Pharmacological clustering further sorted 68 proteins that intimately involved in cancer pathogenesis based on Gene Ontology. Subsequently, pathways on anticancer effect of Tan IIwere delineated. Five functional units were clarified according to literature: including regulation on apoptosis, proliferation, sustained angiogenesis, autophagic cell death, and cell cycle. The GO analysis confirmed the classification was statistically significant. The inhibiting influence of Tan IIon p70 S6K/mTOR pathway was revealed for the first time. The in vitro experiments displayed the selectivity of Tan IIon HeLa, MDA-MB-231, HepG2, A549, and ACHN cell lines, the ICvalues were 0.54 μM, 4.63 μM, 1.42 μM, 17.30 μM and 204.00 μM, respectively. This result further reinforced the anticancer effect of Tan IItreatment.

CONCLUSIONS: The current study provides a systematic methodology for discovering the coordination of the anticancer pathways regulated by Tan IIvia protein network. And it also offers a valuable guidance for systematic study on the therapeutic values of other herbs and their active compounds.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.