Abstract Title:

Antifatigue and antihypoxia activities of oligosaccharides and polysaccharides from Codonopsis pilosula in mice.

Abstract Source:

Food Funct. 2020 Jul 1. Epub 2020 Jul 1. PMID: 32608442

Abstract Author(s):

Qi Xie, Yuting Sun, Lanlan Cao, Liangni Chen, Jie Chen, Xuemei Cheng, Changhong Wang

Article Affiliation:

Qi Xie


Codonopsis pilosula is a traditional Chinese medicine and food supplement that is widely used in China. This study aimed to investigate the antifatigue and antihypoxia activities of different extracts and fractions from C. pilosula, including ethanol extract (ETH), water extract (WAT), polysaccharides (POL), inulin (INU) and oligosaccharides (OLI). Different extracts and fractions were orally administered to mice at the doses of 0.25, 0.5 and 1.0 g kg-1 once a day for 21 days. Antifatigue activity was assessed through the weight-loaded swimming test on the 21st day, and antihypoxia activity was evaluated through the normobarie hypoxia test on the following day. Finally, biochemical parameters, such as liver glycogen (LG), muscle glycogen (MG), blood urea nitrogen (BUN), lactic dehydrogenase (LDH), malondialdehyde (MDA), and glutathione (GSH) levels, were determined. The results showed that, compared with the control treatment, only POL treatment significantly prolonged the swimming time of the mice. POL groups had the strongest hypoxia tolerance, followed by the OLI and WAT groups. The levels of LG and MG were significantly increased by treatment with POL at the doses of 0.5 and 1.0 g kg-1, whereas BUN and LDH levels in POL groups were significantly lower than those in the control group. MDA under POL and OLI treatment was significantly lower than that under the control treatment. In addition, treatments with POL and OLI, except for treatment with a low dose of OLI, significantly increased GSH levels. In conclusion, POL could efficiently enhance antifatigue and antihypoxia abilities by increasing energy resources, decreasing detrimental metabolite accumulation, and enhancing antioxidant activity. OLI could improve antihypoxia activity by preventing lipid peroxidation and enhancing antioxidant activity.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.