n/a
Abstract Title:

Antioxidant and antihypertensive effects of garlic protein and its hydrolysates and the related mechanism.

Abstract Source:

J Food Biochem. 2019 Dec 26:e13126. Epub 2019 Dec 26. PMID: 31877235

Abstract Author(s):

Xudong Gao, Zihan Xue, Qiqi Ma, Qingwen Guo, Lisha Xing, Ramesh Kumar Santhanam, Min Zhang, Haixia Chen

Article Affiliation:

Xudong Gao

Abstract:

Garlic protein (GP) was enzymatically hydrolyzed using pepsin and trypsin followed by the evaluation of antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of GP and its hydrolysates. The antihypertensive effects of GP and its hydrolysates were determined in vivo. The results showed that GP and its hydrolysates namely GPH-P (pepsin) and GPH-T (trypsin) possessed appreciable antioxidant and ACE inhibitory activities. The ACE inhibitory activity of GP, GPH-T, and GPH-P was in consistent with their antioxidant activities. GP and its hydrolysates offered significant protective effects against HO-induced oxidative damage (p < .05). In addition, the administration of GP, GPH-T, and GPH-P reduced the blood pressure in hypertensive rats. The mechanism might be to reduce blood pressure by inhibiting the activity of ACE, reducing the formation of ACEII, and protecting the activity of bradykinin. This study suggested that GPmight be utilized as a promising functional food as antioxidant and antihypertensive agents. PRACTICAL APPLICATIONS: Garlic (Allium sativum L.) is one of the oldest cultivated plants that belongs to the Liliaceae family and it has been used in cooking and medicinal applications. Large quantities ofgarlic residuals were produced with the development of the garlic essential oil industry. These residuals are highly rich in proteins and they can be used for the preparation of protein hydrolysates. Generally, hydrolysates are considered as a promising food supplement due to the enrichment of amino acids present in it. In this study, garlic proteins (GPs) and its hydrolysates retain effective antioxidant effects. They were found to reduce  the blood pressure and prevent oxidative stress induced by HO. The information from this study could be used to develop a new nutritional supplement from GP and its hydrolysates to treat hypertension as well as prevent oxidative damage.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.