Abstract Title:

Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells.

Abstract Source:

Mol Carcinog. 2008 Sep;47(9):686-700. PMID: 18240292

Abstract Author(s):

Salida Mirzoeva, Nam Deuk Kim, Karen Chiu, Carrie A Franzen, Raymond C Bergan, Jill C Pelling

Article Affiliation:

Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA.


Progression of cancer leads to hypoxic solid tumors that mount specific cell signaling responses to low oxygen conditions. An important objective of anti-cancer therapy is the development of new drugs that suppress hypoxic responses in solid tumors. Apigenin is a natural flavone that has been shown to have chemopreventive and/or anti-cancer properties against a number of tumor types. However, the mechanisms underlying apigenin's chemopreventive properties are not yet completely understood. In this study, we have investigated the effects of apigenin on expression of hypoxia-inducible factor-1 (HIF-1) in human metastatic prostate PC3-M cancer cells. We found that hypoxia induced a time-dependent increase in the level of HIF-1alpha subunit protein in PC3-M cells, and treatment with apigenin markedly decreased HIF-1alpha expression under both normoxic and hypoxic conditions. Further, apigenin prevented the activation of the HIF-1 downstream target gene vascular endothelial growth factor (VEGF). We then showed that apigenin inhibited expression of HIF-1alpha by reducing stability of the protein as well as by reducing the level of HIF-1alpha mRNA. We also found that apigenin inhibited Akt and GSK-3beta phosphorylation in PC3-M cells. Further experiments demonstrated that constitutively active Akt blunted the effect of apigenin on HIF-1alpha expression. Taken together, our results identify apigenin as a bioflavonoid that inhibits hypoxia-activated pathways linked to cancer progression in human prostate cancer, in particular the PI3K/Akt/GSK-3 pathway. Further studies on the mechanism of action of apigenin will likely provide new insight into its applicability for pharmacologic targeting of HIF-1alpha for cancer therapeutic or chemopreventive purposes.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.