Abstract Title:

A cell-based system for screening hair growth-promoting agents.

Abstract Source:

Br J Sports Med. 2009 Nov;43(11):840-4. Epub 2008 Apr 2. PMID: 19277688

Abstract Author(s):

Sungran Huh, Jongsung Lee, Eunsun Jung, Sang-Cheol Kim, Jung-Il Kang, Jienny Lee, Yong-Woo Kim, Young Kwan Sung, Hee-Kyoung Kang, Deokhoon Park

Article Affiliation:

Biospectrum Life Science Institute, 101-701 SK Ventium, 522 Dangjung Dong, Gunpo City, 435-833 Gyeonggi-do, Republic of Korea.


Androgen-inducible transforming growth factor beta (TGF-beta1) derived from dermal papilla cells (DPCs) is a catagen inducer that mediates hair growth suppression in androgenetic alopecia (AGA). In this study, a cell-based assay system was developed to monitor TGF-beta1 promoter activity and then used to evaluate the effects of activated TGF-beta1 promoter in human epidermal keratinocytes (HaCaT). To accomplish this, a pMetLuc-TGF-beta1 promoter plasmid that expresses the luciferase reporter gene in response to TGF-beta1 promoter activity was constructed. Treatment of HaCaT with dihydrotestosterone, which is known to be a primary factor of AGA, resulted in a concentration-dependent increase in TGF-beta1 promoter activity. However, treatment of HaCaT with the TGF-beta1 inhibitor, curcumin, resulted in a concentration-dependant decrease in TGF-beta1 expression. Subsequent use of this assay system to screen TGF-beta1 revealed that HaCaT that were treated with apigenin showed decreased levels of TGF-beta1 expression. In addition, treatment with apigenin also significantly increased the proliferation of both SV40T-DPCs (human DPCs) and HaCaT cells. Furthermore, apigenin stimulated the elongation of hair follicles in a rat vibrissa hair follicle organ culture. Taken together, these findings suggest that apigenin, which is known to have antioxidant, anti-inflammatory, and anti-tumor properties, stimulates hair growth through downregulation of the TGF-beta1 gene. In addition, these results suggest that this assay system could be used to quantitatively measure TGF-beta1 promoter activity in HaCaT, thereby facilitating the screening of agents promoting hair growth.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.