Abstract Title:

Pharmacological activation of ERβ by arctigenin maintains the integrity of intestinal epithelial barrier in inflammatory bowel diseases.

Abstract Source:

FASEB J. 2019 Dec 30. Epub 2019 Dec 30. PMID: 31908053

Abstract Author(s):

Yu Tao, Mengfan Yue, Changjun Lv, Xinming Yun, Simiao Qiao, Yulai Fang, Zhifeng Wei, Yufeng Xia, Yue Dai

Article Affiliation:

Yu Tao


Intestinal epithelial barrier dysfunction is deeply involved in the pathogenesis of inflammatory bowel diseases (IBD). Arctigenin, the main active constituent in Fructus Arctii (a traditional Chinese medicine), has previously been found to attenuate colitis induced by dextran sulfate sodium (DSS) in mice. The present study investigated whether and how arctigenin protects against the disruption of the intestinal epithelial barrier in IBD. Arctigenin maintained the intestinal epithelial barrier function of mice with DSS- and TNBS-induced colitis. In Caco-2 and HT-29 cells, arctigenin lowered the monolayer permeability, increased TEER, reversed the abnormal expression of tight junction proteins, and restored the altered localization of F-actin induced by TNF-α and IL-1β. The specific antagonist PHTPP or shRNA of ERβ largely weakened the protective effect of arctigenin on the epithelial barrier function of Caco-2 and HT-29 cells. Molecular docking demonstrated that arctigenin had high affinity for ERβ mainly through hydrogen bonds as well as hydrophobic effects, and the protective effect of arctigenin on the intestinal barrier function was largely diminished in ERβ-mutated (ARG346 and/or GLU305) Caco-2 cells. Moreover, arctigenin-blocked TNF-α induced increase of the monolayer permeability in Caco-2 and HT-29 cells and the activation of myosin light chain kinase (MLCK)/myosin light chain (MLC) pathway in an ERβ-dependent manner. ERβ deletion in colons of mice with DSS-induced colitis resulted in a significant attenuation of the protective effect of arctigenin on the barrier integrity and colon inflammation. Arctigenin maintained the integrity of the intestinal epithelial barrier under IBD by upregulating the expression of tight junction proteins through the ERβ-MLCK/MLC pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.