Aromatic turmerone constitutes a promising candidate to support regeneration in neurologic disease. - GreenMedInfo Summary
Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo.
Stem Cell Res Ther. 2014 ;5(4):100. Epub 2014 Sep 26. PMID: 25928248
Joerg Hucklenbroich
INTRODUCTION: Aromatic (ar-) turmerone is a major bioactive compound of the herb Curcuma longa. It has been suggested that ar-turmerone inhibits microglia activation, a property that may be useful in treating neurodegenerative disease. Furthermore, the effects of ar-turmerone on neural stem cells (NSCs) remain to be investigated.
METHODS: We exposed primary fetal rat NSCs to various concentrations of ar-turmerone. Thereafter, cell proliferation and differentiation potential were assessed. In vivo, naïve rats were treated with a single intracerebroventricular (i.c.v.) injection of ar-turmerone. Proliferative activity of endogenous NSCs was assessed in vivo, by using noninvasive positron emission tomography (PET) imaging and the tracer [(18)F]-fluoro-L-thymidine ([(18)F]FLT), as well as ex vivo.
RESULTS: In vitro, ar-turmerone increased dose-dependently the number of cultured NSCs, because of an increase in NSC proliferation (P < 0.01). Proliferation data were supported by qPCR-data for Ki-67 mRNA. In vitro as well as in vivo, ar-turmerone promoted neuronal differentiation of NSCs. In vivo, after i.c.v. injection of ar-turmerone, proliferating NSCs were mobilized from the subventricular zone (SVZ) and the hippocampus of adult rats, as demonstrated by both [(18)F]FLT-PET and histology (P < 0.05).
CONCLUSIONS: Both in vitro and in vivo data suggest that ar-turmerone induces NSC proliferation. Ar-turmerone thus constitutes a promising candidate to support regeneration in neurologic disease.