n/a
Abstract Title:

Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes.

Abstract Source:

Anticancer Drugs. 2012 Apr ;23(4):370-9. PMID: 22185819

Abstract Author(s):

Antony S Tin, Shyam N Sundar, Kalvin Q Tran, Anna H Park, Kevin M Poindexter, Gary L Firestone

Article Affiliation:

Antony S Tin

Abstract:

Artemisinin, a sesquiterpene phytolactone derived from Artemisia annua, is a potent antimalarial compound with promising anticancer properties, although the mechanism of its anticancer signaling is not well understood. Artemisinin inhibited proliferation and induced a strong G1 cell cycle arrest of cultured MCF7 cells, an estrogen-responsive human breast cancer cell line that represents an early-stage cancer phenotype, and effectively inhibited the in-vivo growth of MCF7 cell-derived tumors from xenografts in athymic nude mice. Artemisinin also induced a growth arrest of tumorigenic human breast cancer cell lines with preneoplastic and late stage cancer phenotypes, but failed to arrest the growth of a nontumorigenic human mammary cell line. Concurrent with the cell cycle arrest of MCF7 cells, artemisinin selectively downregulated the transcript and protein levels of the CDK2 and CDK4 cyclin-dependent kinases, cyclin E, cyclin D1, and the E2F1 transcription factor. Analysis of CDK2 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK2 gene expression was accounted for by the loss of CDK2 promoter activity. Chromatin immunoprecipitation revealed that artemisinin inhibited E2F1 interactions with the endogenous MCF7 cell CDK2 and cyclin E promoters. Moreover, constitutive expression of exogenous E2F1 prevented the artemisinin-induced cell cycle arrest and downregulation of CDK2 and cyclin E gene expression. Taken together, our results demonstrate that the artemisinin disruption of E2F1 transcription factor expression mediates the cell cycle arrest of human breast cancer cells and represents a critical transcriptional pathway by which artemisinin controls human reproductive cancer cell growth.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.