Abstract Title:

Positive Association of Ascorbate and Inverse Association of Urate with Cognitive Function in People with Parkinson's Disease.

Abstract Source:

Antioxidants (Basel). 2020 Sep 23 ;9(10). Epub 2020 Sep 23. PMID: 32977491

Abstract Author(s):

Emma S Spencer, Toni Pitcher, Gabriel Veron, Tracey Hannam, Michael MacAskill, Tim Anderson, John Dalrymple-Alford, Anitra C Carr

Article Affiliation:

Emma S Spencer


Oxidative stress is thought to contribute to the aetiology of neurological disorders such as Parkinson's disease. Ascorbate (vitamin C) is a potent antioxidant and is associated with neurological and cognitive function. In this study we assessed the ascorbate status of a cohort of people with Parkinson's disease (= 215), aged 50-90 years, compared with a cohort of age matched healthy controls (= 48). The study sample's cognitive status ranged from normal to mild cognitive impairment and dementia. There was no difference between the Parkinson's disease and healthy control groups with respect to mean ascorbate status, however, a higher proportion of participants with Parkinson's disease had hypovitaminosis C (i.e.,<23μmol/L) compared with healthy controls (20% vs. 8%, respectively). Within the Parkinson's disease group, Montreal Cognitive Assessment (MoCA) scores correlated positively with ascorbate concentrations, with higher ascorbate status associated with better cognitive function (= 0.14,= 0.045). Participants with hypovitaminosis C had significantly lower MoCA scores relative to participants with ascorbate concentrations>23µmol/L (= 0.014). Ascorbate concentrations were significantly lower in the cognitively impaired subgroup compared with the normal cognition subgroup in the Parkinson's disease cohort (= 0.03). In contrast, urate showed an inverse correlation with cognitive function (= -0.19,= 0.007), with higher urate concentrations observed in the cognitively impaired subgroup compared with the normal cognition subgroup (= 0.015). There was an inverse association between ascorbate status and urate concentrations (= -0.15,= 0.017). Plasma protein carbonyls, a measure of systemic oxidative stress, were not significantly different between the Parkinson's disease cohort and healthy controls, and there was no association with cognitive function (= 0.09,= 0.19) or with ascorbate status (= -0.05,= 0.45). Overall, our study showed ascorbate status was positively associated with cognitive function in Parkinson's disease, suggesting that longitudinal studies investigating the temporal sequence of cognitive decline and ascorbate status are warranted.

Study Type : Human Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.