n/a
Abstract Title:

The Association of Palmitoylethanolamide with Luteolin Decreases Neuroinflammation and Stimulates Autophagy in Parkinson's Disease Model.

Abstract Source:

CNS Neurol Disord Drug Targets. 2015 ;14(10):1350-65. PMID: 26295827

Abstract Author(s):

Rosalba Siracusa, Irene Paterniti, Daniela Impellizzeri, Marika Cordaro, Rosalia Crupi, Michele Navarra, Salvatore Cuzzocrea, Emanuela Esposito

Article Affiliation:

Rosalba Siracusa

Abstract:

Parkinson's disease (PD) is a disorder resulted by degeneration of dopaminergic neurons. To counteract the neuroinflammation and oxidative stress of PD, we decided to test a new composite constituted by palmitoylethanolamide (PEA) and luteolin (Lut), in a mass ratio of 10:1, respectively (co-ultraPEALut). In this study the neuroprotective property of the new compound was investigated. For the in vivo model of PD, mice received four injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Starting 24 h after the first administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we treated animals with co-ultraPEALut daily until 7 days. On day 8, brains were processed for Western blotting and immunohistochemical analysis. Treatment with co-ultraPEALut reduced the specific markers of PD (tyrosine hydroxylase immunopositive), and the increased levels of activated astrocytes and pro-inflammatory cytokines as well as inducible nitric oxide synthase. Further, the possible association of autophagy with the beneficial effects of coultraPEALut. Western blot analysis and immunofluorescence staining showed that co-ultraPEALut administration increased autophagy process. These data were confirmed by an in vitro model, using SH-SY5Y neuroblastoma cells. Western blot analysis showed that co-ultraPEALut pre-treatment maintained high Beclin-1 and p62 expression, while continued to inhibit the p70S6K expression. Altogether, these results put forward that treatment with co-ultraPEALut is able to modulate both the neuroinflammatory process and the autophagic pathway involved in PD, actions which may underlie its neuroprotective effect.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.