Astaxanthin reduces iron-induced oxidative damage. - GreenMedInfo Summary
Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability?
Biochem Biophys Res Commun. 2001 Oct 19;288(1):225-32. PMID: 11594777
Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden. [email protected]
Astaxanthin and peridinin, two typical carotenoids of marine microalgae, and lycopene were incorporated in phosphatidylcholine multilamellar liposomes and tested as inhibitors of lipid oxidation. Contrarily to peridinin results, astaxanthin strongly reduced lipid damage when the lipoperoxidation promoters-H(2)O(2), tert-butyl hydroperoxide (t-ButOOH) or ascorbate-and Fe(2+):EDTA were added simultaneously to the liposomes. In order to check if the antioxidant activity of carotenoids was also related to their effect on membrane permeability, the peroxidation processes were initiated by adding the promoters to Fe(2+)-loaded liposomes (encapsulated in the inner aqueous solution). Despite that the rigidifying effect of carotenoids in membranes was not directly measured here, peridinin probably has decreased membrane permeability to initiators (t-ButOOH>ascorbate>H(2)O(2)) since its incorporation limited oxidative damage on iron-liposomes. On the other hand, the antioxidant activity of astaxanthin in iron-containing vesicles might be derived from its known rigidifying effect and the inherent scavenging ability.