n/a
Abstract Title:

Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats.

Abstract Source:

Brain Res. 2015 Oct 22 ;1624:113-24. Epub 2015 Jul 23. PMID: 26210617

Abstract Author(s):

Xiang-Sheng Zhang, Xin Zhang, Qing-Rong Zhang, Qi Wu, Wei Li, Tian-Wei Jiang, Chun-Hua Hang

Article Affiliation:

Xiang-Sheng Zhang

Abstract:

We have previously shown that astaxanthin (ATX) reduces the blood-brain barrier (BBB) disruption and neurovascular dysfunction following subarachnoid hemorrhage (SAH) insults. However, the underlying mechanisms remain unclear. It is known that the matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9) plays a crucial role in the pathogenesis of secondary brain injury after SAH. And ATX has the ability to regulate MMP-9 in other models. Herein, we investigated whether ATX could ameliorate MMP-9 activation and expression in a rat model of SAH. A total of 144 rats were randomly divided into the following groups: control group (n=36), SAH group (n=36), SAH+vehicle group (n=36), and SAH+ATX group (n=36). The SAH model was induced by injection of 0.3 ml autologous blood into the prechiasmatic cistern. ATX (20μl of 0.1 mmol) or vehicle was administered intracerebroventricularly 30 min after SAH induction. Mortality, neurological function, brain edema and blood-brain barrier (BBB) permeability were measured at 24 and 72 h after SAH. Biochemical and zymographic methods were used to analyze MMP-9 expression and activity in brain samples. Immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining were also evaluated at 24h. Our data indicated that ATX could significantly reduce the expression and activity of MMP-9, leading to the amelioration of brain edema, BBB impairment, neurological deficits and TUNEL-positive cells at 24h but not 72 h after SAH. The ATX-mediated down-regulation of MMP-9 was correlated with the decreased levels of IL-1β, TNF-α, oxidative stress, activated microglia and infiltrating neutrophils. These results suggest thatthe neurovascular protection of ATX in SAH is partly associated with the inhibition of MMP-9 expression and activity.

Study Type : Animal Study

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.