n/a
Abstract Title:

Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice.

Abstract Source:

Biomed Pharmacother. 2016 Oct ;83:975-988. Epub 2016 Aug 11. PMID: 27522260

Abstract Author(s):

Ming Wang, Jing Zhao, Nan Zhang, Jianghua Chen

Article Affiliation:

Ming Wang

Abstract:

Astilbin is a flavonoid compound derived from the rhizome of Smilax china L. The effects and possible molecular mechanisms of astilbin on potassium oxonate-induced hyperuricemia mice were investigated in this study. Different dosages of astilbin (5, 10, and 20mg/kg) were administered to induce hyperuricemic mice. The results demonstrated that the serum uric acid (Sur) level was significantly decreased by increasing the urinary uric acid (Uur) level and fractional excretion of urate (FEUA) with astilbin, related with suppressing role in meditation of Glucose transporter 9 (GLUT9), Human urate transporter 1 (URAT1) expression and up-regulation of ABCG2, Organic anion transporter 1/3 (OAT1/3) and Organic cation transporter 1 (OCT1). In addition, kidney function parameters, including serum creatinine (Scr) and blood urea nitrogen (BUN) were restored in astilbin-treated hyperuricemic rats. Further investigation indicated that astilbin prevented the renal damage against the expression of Thioredoxin-interacting protein (TXNIP) and its related inflammation signal pathway, including NLR pyrin domain-containing 3/Nuclear factorκB (NLRP3/NF-κB), which is associated with the up-regulation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and also presented a renal protective role by suppression oxidative stress. Moreover, astilbin inhibited activation of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) cascade and over-expression of suppressor of cytokine signaling 3 (SOCS3) in the kidneys of potassium oxonate-induced mice. These findings provide potent evidence and therapeutic strategy for astilbin as a safe and promising compound in the development of a disease-modifying drug due to its function against hyperuricaemia and renal injury induced by potassium oxonate.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.