Article Publish Status: FREE
Abstract Title:

Astragalin alleviates cerebral ischemia-reperfusion injury by improving anti-oxidant and anti-inflammatory activities and inhibiting apoptosis pathway in rats.

Abstract Source:

BMC Complement Med Ther. 2020 Apr 21 ;20(1):120. Epub 2020 Apr 21. PMID: 32316944

Abstract Author(s):

Xiuying Chen, Chang Cheng, Xuzheng Zuo, Wen Huang

Article Affiliation:

Xiuying Chen


BACKGROUND: Astragalin (AG), a flavonoid from many traditional herbs and medicinal plants, has been described to exhibit in vitro anti-inflammatory activity. The paper aimed to study the effects of astragalin on anti-inflammatory, anti-oxidative ability and apoptosis signaling pathway in brain tissue of rats with cerebral ischemia-reperfusion injury, and to explore its possible mechanism.

METHODS: The rat model of focal cerebral ischemia-reperfusion injury was established by suture method. It was randomly divided into 5 groups, sham operation group, ischemia-reperfusion (I/R) treatment group, and astragalin treatment I / R group (12.5, 25, 50 mg / kg). After 24 h of reperfusion, the neurological deficits of the rats were analyzed and HE staining was performed. The volume of cerebral infarction was calculated by triphenyltetrazolium chloride (TTC) staining, and the apoptosis of nerve cells was detected by TUNEL staining. In addition,the content of malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH) assay and glutathione peroxidase (GSH-Px) were measured in rat brain tissue. Western blot analysis was used to determine the expression of related proteins.

RESULTS: Compared with I/R group, the neurological deficit score and infarct volume of I/R rats were reduced in the astragalin treatment group. In the astragalin treatment group, MDA and NO levels in I/R rats were reduced, antioxidant enzymes and superoxide dismutase (SOD) activity were increased. In the astragalin treatment group, NF-κB (p65) and cyclooxygenase-2 (COX-2) expression levels were down-regulated, NF-E2-related factor 2 (Nrf2) nucleus and heme oxygenase-1 (HO-1) protein expression levels were up-regulated. In addition, the astragalin treatment can inhibit apoptosis, down-regulate Bax and cleaved caspase-3 expression, up-regulate Bcl-Xl expression.

CONCLUSION: The antioxidant properties of astragalin may play an important role in improving cerebral ischemia-reperfusion injury.

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.