Article Publish Status: FREE
Abstract Title:

Astragaloside IV attenuates hypoxia‑induced pulmonary vascular remodeling via the Notch signaling pathway.

Abstract Source:

Mol Med Rep. 2021 Jan ;23(1). Epub 2020 Nov 25. PMID: 33236156

Abstract Author(s):

Jiamei Yao, Xia Fang, Cui Zhang, Yushu Yang, Dongsheng Wang, Qiong Chen, Guangwei Zhong

Article Affiliation:

Jiamei Yao


The Notch signaling pathway participates in pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis. Astragaloside IV (AS‑IV) is an effective antiproliferative treatment for vascular diseases. The present study aimed to investigate the protective effects and mechanisms underlying AS‑IV on hypoxia‑induced PASMC proliferation and pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) model rats. Rats were divided into the following four groups: i) normoxia; ii) hypoxia (10% O); iii) treatment, hypoxia + intragastrical administration of AS‑IV (2 mg/kg) daily for 28 days; and iv) DAPT, hypoxia + AS‑IV treatment + subcutaneous administration of DAPT (10 mg/kg) three times daily. The effects of AS‑IV treatment on the development of hypoxia‑induced PAH, right ventricle (RV) hypertrophy and pulmonary vascular remodeling were examined. Furthermore, PASMCs were treated with 20 µmol/l AS‑IV under hypoxic conditions for 48 h. To determine the effect of Notch signaling in vascular remodeling and the potential mechanisms underlying AS‑IV treatment, 5 mmol/l γ‑secretase inhibitor [N‑[N‑(3,5‑difluorophenacetyl)‑L‑alanyl]‑S‑phenylglycine t‑butyl ester (DAPT)] was used. Cell viability and apoptosis were determined by performing the MTT assay and flow cytometry, respectively. Immunohistochemistry was conducted to detect the expression of proliferating cell nuclear antigen (PCNA). Moreover, the mRNA and protein expression levels of Notch‑3, Jagged‑1, hes family bHLH transcription factor 5 (Hes‑5) and PCNA were measured via reverse transcription‑quantitative PCR and western blotting, respectively. Compared with the normoxic group, hypoxia‑induced PAH model rats displayed characteristics of PAH and RV hypertrophy, whereas AS‑IV treatment alleviated PAH and prevented RV hypertrophy. AS‑IV also inhibited hypoxia‑induced pulmonary vascular remodeling, as indicated by reduced wall thickness and increased lumen diameterof pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia‑induced PAH model rats. Compared with normoxia, hypoxia promoted PASMC proliferation, whereas AS‑IV treatment inhibited hypoxia‑induced PASMC proliferation by downregulating PCNA expressionand. In hypoxia‑treated PAH model rats and cultured PASMCs, AS‑IV treatment reduced the expression levels of Jagged‑1, Notch‑3 and Hes‑5. Furthermore, Notch signaling inhibition via DAPT significantly inhibited the pulmonary vascular remodeling effect of AS‑IVand. Collectively, the results indicated that AS‑IV effectively reversed hypoxia‑induced pulmonary vascular remodeling and PASMC proliferation via the Notch signaling pathway. Therefore, the present study provided novel insights into the mechanism underlying the use of AS‑IV for treatment of vascular diseases, such as PAH.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.