n/a
Abstract Title:

Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats.

Abstract Source:

Int Immunopharmacol. 2021 Mar ;92:107335. Epub 2021 Jan 8. PMID: 33429332

Abstract Author(s):

Lin Li, Haiyan Gan, Huaqian Jin, Yan Fang, Yan Yang, Jianping Zhang, Xiaowei Hu, Lisheng Chu

Article Affiliation:

Lin Li

Abstract:

Microglia/macrophages play a dual role in brain injury and repair following cerebral ischemia/reperfusion. Promoting microglia/macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype has been considered as a potential treatment for ischemic stroke. Astragaloside IV (AS-IV) is a primary active ingredient of Chinese herb Radix Astragali, which protects against acute cerebral ischemic/reperfusion injury through its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, it remains unknown whether AS-IV improves ischemic brain tissue repair and its underlying mechanism. A transient middle cerebral artery occlusion (tMCAO) rat model was used in this study. The results showed that AS-IV significantly improved long-term brain injury, reduced the expression of M1 microglia/macrophage markers and increased the expression of M2 microglia/macrophage markers 14 days after cerebral ischemia/reperfusion. AS-IV also increased peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression. Moreover, AS-IV promoted neurogenesis and angiogenesis, and increased the protein expression of brain-derived growth factor (BDNF), insulin-like growthfactor-1 (IGF-1) and vascular endothelial growth factor (VEGF). However, these beneficial effects were greatly blocked by PPARγ antagonist T0070907. These results together suggest that AS-IV could enhance neurogenesis, angiogenesis and neurological functional recovery, which may be partially through transforming microglia/macrophage from M1 to M2 phenotype in a PPARγ-dependent manner after cerebral ischemia/reperfusion injury. Therefore, AS-IV can be considered as a promising therapeutic agent for ischemic stroke.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2025 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.