n/a
Abstract Title:

AstragalosideⅣ Protects Against Aβ1-42-induced Oxidative Stress, Neuroinflammation and Cognitive Impairment in Rats.

Abstract Source:

Chin Med Sci J. 2018 Mar 30 ;33(1):29-37. PMID: 29620512

Abstract Author(s):

Yan-Fang Pan, Xiao-Tao Jia, Er-Fei Song, Xiao-Zhong Peng

Article Affiliation:

Yan-Fang Pan

Abstract:

Objective To investigate the neuroprotective action of astragalosideⅣ (AS-Ⅳ) on spatial learning and memory impairment induced by amyloid-beta 1-42 (Aβ1-42) in rats and elucidate its underlying molecular mechanisms. Methods Adult-male Sprague-Dawley rats (230-250 g) were divided into six groups randomly: control, Aβ1-42, AS-Ⅳ, Aβ1-42 plus 5 mg/kg·d AS-Ⅳ,Aβ1-42 plus 25 mg/kg·d AS-Ⅳ, and Aβ1-42 plus 50 mg/kg·d AS-Ⅳ groups. Aβ1-42 were delivered by intracerebroventricular injection under the guidance of a brain stereotaxic apparatus. The Morris water maze test (hidden platform test, probe trials, visible platform test) was performed one weekafter Aβ1-42 injection to obtain the ability of rat spatial learning and memory. AS-Ⅳ (5, 25 and 50 mg/kg·d) was administrated intraperitoneally once per day from the 8th day after Aβ1-42 injection for 5 consecutive days. Average escape latencies, distances for searching for the platform underwater and the percentage of total time elapsed and distance swam in the right quadrant after removing platform were determined by behavior software system. The vision and swim speeds of rats were also determined to exclude the effect of these factors on the parameters of learning and memory. Afterbehavioral tests, the rats were sacrificed immediately by decapitation. Hippocampus were collected. The enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT) in the hippocampus obtained from different-treated rat brain were measured by following the manufacturer's instructions. The levels of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in tissue lysates were assayed with ELISA. Results The water maze test results indicated that chronic treatments with AS-Ⅳ effectively protected the rats from Aβ1-42-induced spatial learning and memory impairment. Furthermore, the activities of SOD, GSH-px and CAT decreased by Aβ1-42 were also restored by AS-Ⅳ treatment in the hippocampus of rats. In addition, AS-Ⅳ significantly decreased the levels of IL-1β and TNF-α in the hippocampus of Aβ1-42-induced amnesia's rats. Conclusion Our findings suggest that AS-Ⅳ might be a useful chemical in improving the spatial memory and relieving the oxidative stress and neuroinflammation in Alzheimer patients.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.