n/a
Article Publish Status: FREE
Abstract Title:

Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation.

Abstract Source:

Clin Cancer Res. 2003 Jul ;9(7):2866-75. PMID: 12855667

Abstract Author(s):

YingMeei Tan, Rong Yu, John M Pezzuto

Article Affiliation:

YingMeei Tan

Abstract:

Betulinic acid, a naturally occurring triterpene found in the bark of the white birch tree, has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. We demonstrate currently that treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH(2)-terminal kinase [widely accepted proapoptotic mitogen-activated protein kinases (MAPKs)] with no change in the phosphorylation of extracellular signal-regulated kinases (antiapoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS). As demonstrated previously, cells treated with betulinic acid generate ROS. Preincubation of cells with antioxidants blocks the process of programmed cell death, and prevents the phosphorylation of p38 and stress activated protein kinase/c-Jun NH(2)-terminal kinase. These data suggest that ROS act upstream of the MAPKs in the signaling pathway of betulinic acid. In addition to mediating these responses, treatment of cells with betulinic acid resulted in a gradual depolarization of mitochondrial membrane potential, a phenomenon established to contribute to the induction of programmed cell death. Interestingly, p38 was capable of partially modulating this perturbation, and investigations of mitochondria-associated apoptotic events indicate no involvement of known caspases. These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the antitumor effect mediated with human melanoma carried in athymic mice.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.