Article Publish Status: FREE
Abstract Title:

Betulinic Acid-Mediated Apoptosis in Human Prostate Cancer Cells Involves p53 and Nuclear Factor-Kappa B (NF-κB) Pathways.

Abstract Source:

Molecules. 2017 Feb 10 ;22(2). Epub 2017 Feb 10. PMID: 28208611

Abstract Author(s):

Eswar Shankar, Ailin Zhang, Daniel Franco, Sanjay Gupta

Article Affiliation:

Eswar Shankar


Defects in p53 and nuclear factor-kappa B (NF-κB) signaling pathways are frequently observed in the initiation and development of various human malignancies, including prostate cancer. Clinical studies demonstrate higher expression of NF-κB/p65/RelA, NF-κB/p50/RelB, and cRel as well as downregulation of the p53 network in primary prostate cancer specimens and in metastatic tumors. Betulinic acid (BA), is a triterpenoid that has been reported to be an effective inducer of apoptosis through modification of several signaling pathways. Our objective was to investigate the pathways involved in BA-induced apoptosis in human prostate cancer cells. We employed the androgen-responsive LNCaP cells harboring wild-type p53, and androgen-refractory DU145 cells possessing mutated p53 with high constitutive NF-κB activity. Inhibition of cell survival by BA at 10 and 20 µM concentrations occurred as a result of alteration in Bax/Bcl-2 ratio inboth cell lines that led to an increased cytochrome C release, caspase activation and poly(ADP)ribose polymerase (PARP) cleavage, leading to apoptosis. BA treatment resulted in stabilization of p53 through increase in phosphorylation at Ser15 in LNCaP cells, but not in DU145 cells, and induction ofcyclin kinase inhibitor p21/Waf1 in both cell types. Furthermore, treatment of both prostate cancer cells with BA decreased the phosphorylation of IκB kinase (IKK)α and I-kappa-B-alpha (IκBα) inhibiting the nuclear location of NF-κB/p65 causing cytosolic accumulation and resulting in its decreased nuclear binding. We demonstrate that BA may induce apoptosis by stabilizing p53 and downregulating NF-κB pathway in human prostate cancer cells, irrespective of the androgen association, and therefore can potentially be developed as a molecule of interest in cancer chemoprevention.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.