Article Publish Status: FREE
Abstract Title:

Effect of feeding with bilberry fruit on the expression pattern ofαCaMKII in hippocampal neurons in normal and diabetic rats.

Abstract Source:

Pol J Vet Sci. 2017 Mar 1 ;20(2):313-319. PMID: 28865231

Abstract Author(s):

M Matysek, S Mozel, R Szalak, A Zacharko-Siembida, K Obszańska, M B Arciszewski

Article Affiliation:

M Matysek


αCaMKII, widely occurring in the central nervous system, plays a significant role in cognitive processes. It is well known that diabetes is a risk factor that may trigger brain atrophy, cognitive dysfunction and finally lead to memory loss. Antioxidants richly present in bilberry fruits are believed to have significant effects on diabetes-related brain dysfunctions mainly due to their abilities to modulate neurotransmitter release that lead to reduction of the negative impact of free radicals on cognitive processes. The aim of the present research was to immunohistochemically investigate theexpression patterns of αCaMKII in hippocampal neurons from non-diabetic, diabetic and diabetic rats fed with an extract of bilberry fruit. The obtained results show that in comparison to the control group, in diabetic rats hippocampal neurons immunoreactive (ir) to αCaMKII were swollen and the lengths of the neuronal fibres were reduced. Further study shows that in diabetic rats fed with bilberry fruit, αCaMKII-positive nerve fibres were significantly longer when compared to the groups of diabetic and control rats. Additionally, we observed statistically significant changes in the average larger diameter of αCaMKII-ir hippocampal neurons between groups of diabetic rats (with vs. without supplement of bilberry fruit). The results of the present work suggest that antioxidants present in bilberry fruits influence the morphology of and possibly exhibit beneficial and neuroprotective effects on hippocampal neurons during diabetes. It is likely that changes in the appearance of αCaMKII-expressed hippocampal neurons may reflect the diabetes-evoked rise in Ca2+ level in the cerebral nerve terminals. The present research extends our knowledge of preventive mechanisms for cognitive dysfunctions occurring in the brain during diabetes.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.