Abstract Title:

Biochanin A protects against PM-induced acute pulmonary cell injury by interacting with the target protein MEK5.

Abstract Source:

Food Funct. 2019 Oct 14. Epub 2019 Oct 14. PMID: 31608342

Abstract Author(s):

Zhaohui Xue, Junyu Wang, Wancong Yu, Dan Li, Yixia Zhang, Fang Wan, Xiaohong Kou

Article Affiliation:

Zhaohui Xue


Epidemiological studies have shown that exposure to ambient fine particulate matter (PM2.5) is associated with an increased risk for cardiopulmonary diseases. The MEK5/ERK5 and NF-κB signaling pathways are closely related to the regulation of acute pulmonary cell injury (APCI) and may play an important role in the underlying pathophysiological mechanisms. Related studies have shown that Biochanin A (BCA) effectively interferes with APCI, but the underlying mechanism throughwhich this occurs is not fully understood. Previously, based on proteomic and bioinformatic research, we found the indispensable role of MEK5 in mediating remission effects of BCA against PM2.5-induced lung toxicity. Therefore, using A549 adenocarcinoma human alveolar basal epithelial cells (A549 cells), we combined western blot and qRT-PCR to study the protective signaling pathways induced by BCA, indicating that MEK5/ERK5 and NF-κB are both involved in mediating APCI in response to PM2.5, and MEK5/ERK5 positively activated NF-κB and its downstream cellular regulatory factors. BCA significantly suppressed PM2.5-induced upregulation of MEK5/ERK5 expression and phosphorylation and activation of NF-κB. Furthermore, due to the specificity of the MEK5/ERK5 protein structure, the binding sites and binding patterns of BCA and MEK5 were analyzed using molecular docking correlation techniques, which showed that there are stable hydrogen bonds between BCA and the PB1 domain of MEK5 as well as its kinase domain. BCA forms a stable complex with MEK5, which has potential effects on MEKK2/3-MEK5-ERK5 ternary interactions, p62/αPKC-mediated NF-κB regulation, and inhibition of MEK5 target protein phosphorylation. Therefore, our study suggests that MEK5 is an important regulator of intracellular signaling of APCI in response to PM2.5 exposure. BCA may exert anti-APCI activity by targeting MEK5 to inhibit activation of the MEK5/ERK5/NF-κB signaling pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.