n/a
Abstract Title:

Blockade of periostin-dependent migration and adhesion by curcumol via inhibition of nuclear factor kappa B signaling in hepatic stellate cells.

Abstract Source:

Toxicology. 2020 07 ;440:152475. Epub 2020 Apr 25. PMID: 32344006

Abstract Author(s):

Yan Jia, Liyuan Gao, Xiang Yang, Feng Zhang, Anping Chen, Shijun Wang, Jiangjuan Shao, Shanzhong Tan, Shizhong Zheng

Article Affiliation:

Yan Jia

Abstract:

OBJECTIVES: Curcumol, a guaiane-type sesquiterpenoid hemiketal extracted from the herb Rhizoma Curcumae, exhibits multiple-pharmacological activities. We previously reported that curcumol ameliorated hepatic fibrosis by inhibiting hepatic stellate cell (HSC) activation. In this study, we aimed to investigate the effect of curcumol on HSC migration and adhesion, and reveal its regulation mechanisms.

MATERIALS AND METHODS: Cellular viability was determined by Cell Counting Kit-8. Cell migration was detected by boyden chamber and cell scratch experiment. Recombinant human periostin (rh POSTN) and adeno-associated viral (AAV)-GFP-periostin were used to achieve POSTN overexpression in vitro and in vivo, respectively. Nuclear factor kappa B (NF-κB)-p65 overexpression was achieved by using plasmid. ELISA was conducted to detect POSTN level. Immunohistochemistry, qRT-PCR, Western blotting, and immunofluorescence were performed to assess associated factor expression.

RESULTS: Curcumol suppressed HSC migration and adhesion, and reduced the secretion and expression of POSTN. By gain of function POSTN in HSCs, using rh POSTN, we found that the inhibition of HSC migration and adhesion by curcumol depended on the decrease of POSTN. Besides, curcumol protection against chronic CCl-caused hepatic fibrosis could be impaired by POSTN overexpression. Moreover, we showed that curcumol repressed NF-κB signaling and the production of pro-inflammatory factor. Importantly, curcumol down-regulation of POSTN was rescued by knock-in of NF-κB, as well as the inhibition of HSC migration and adhesion.

CONCLUSION: These findings reveal the molecular mechanism of curcumol-reduced HSC migration and adhesion, by which points to the possibility of using curcumol based on NF-κB dependent POSTN for the treatment of fibrogenesis.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.