Article Publish Status: FREE
Abstract Title:

Potential Effects of Bisphenol A on the Heart and Coronary Artery of Adult Male Rats and the Possible Role of L-Carnitine.

Abstract Source:

J Toxicol. 2022 ;2022:7760594. Epub 2022 Dec 26. PMID: 36601412

Abstract Author(s):

Mohamed Moharram Badawy, Mohsen M Elsherbiny, Gehad Elsaid Elshopakey, Asmaa Ezat Elsayyad, Mohammad Abd-El-Same'e El-Kattan, Mohamed G Hamama, Fatemah H Aldariweesh, Alaa Fehaid

Article Affiliation:

Mohamed Moharram Badawy


Bisphenol A (BPA) is an environmental toxin utilized for the production of polycarbonate plastics and epoxy resins. Due to BPA's extensive production and environmental contamination, human exposure is unavoidable. The effects of low-dose of BPA on various body tissues and organs remain controversial. Our study investigated the potential of BPA to induce biochemical, histopathological, and immunohistochemical changes in the coronary artery and myocardium and the potential protective role of L-carnitine (LC). 24 adult Wistar albino male rats were divided equally into a control group, a BPA-treated group (40 mg/kg/d, by gavage for 4 weeks), and a BPA plus LC-treated group (received 40 mg/kg/d of BPA and 300 mg/kg/d of LC, by gavage for 4 weeks). BPA-exposed rats demonstrated structural anomalies in the coronary artery tissue including vacuolation of cells in the media and detachment of the endothelium of the intima. Congestion of blood vessels and infiltration by polynuclear cells were observed in the myocardium. There was an enhanced collagen deposition in both tissues indicating fibrosis. Immunohistochemical changes included enhanced eNOS and caspase-3 expression in the coronary artery and myocardium indicating vascular disease and apoptosis, respectively. Oxidative damage was evident in the coronary artery and the myocardium of BPA-treated rats, which was indicated by the reduced level of glutathione (GSH) and elevated malondydehyde (MDA) levels. The coadministration of LC significantly improved BPA-induced structural alterations and oxidative stress. In conclusion, BPA could potentially cause pathologic changes and oxidative damage in the coronary artery and myocardium, which could be improved by LC coadministration.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.