Article Publish Status: FREE
Abstract Title:

Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-alpha-positive and -negative breast cancer cells.

Abstract Source:

Environ Health Perspect. 2009 Feb ;117(2):175-80. Epub 2008 Oct 8. PMID: 19270784

Abstract Author(s):

Elizabeth W Lapensee, Traci R Tuttle, Sejal R Fox, Nira Ben-Jonathan

Article Affiliation:

Elizabeth W Lapensee


BACKGROUND: Resistance to chemotherapy is a major problem facing breast cancer patients, and identifying potential contributors to chemoresistance is a critical area of research. Bisphenol A (BPA) has long been suspected to promote carcinogenesis, but the high doses of BPA used in many studies generated conflicting results. In addition, the mechanism by which BPA exerts its biological actions is unclear. Although estrogen has been shown to antagonize anticancer drugs, the role of BPA in chemoresistance has not been examined.

OBJECTIVE: The objective of our study was to determine whether BPA at low nanomolar concentrations opposes the action of doxorubicin, cisplatin, and vinblastine in the estrogen receptor-alpha (ERalpha)-positive T47D and the ERalpha-negative MDA-MB-468 breast cancer cells.

METHODS: We determined the responsiveness of cells to anticancer drugs and BPA using the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) cytotoxicity assay. Specific ERalpha and ERbeta inhibitors and real-time polymerase chain reaction were used to identify potential receptor(s) that mediate the actions of BPA. Expression of antiapoptotic proteins was assessed by Western blotting.

RESULTS: BPA antagonizes the cytotoxicity of multiple chemotherapeutic agents in both ERalpha-positive and -negative breast cancer cells independent of the classical ERs. Both cell types express alternative ERs, including G-protein-coupled receptor 30 (GPR30) and members of the estrogen-related receptor family. Increased expression of antiapoptotic proteins is a potential mechanism by which BPA exerts its anticytotoxic effects.

CONCLUSIONS: BPA at environmentally relevant doses reduces the efficacy of chemotherapeutic agents. These data provide considerable support to the accumulating evidence that BPA is hazardous to human health.

Print Options

Sayer Ji
Founder of

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022, Journal Articles copyright of original owners, MeSH copyright NLM.