Abstract Title:

Buddleja saligna Willd (Loganiaceae) inhibits angiotensin-converting enzyme activity in oxidative cardiopathy with concomitant modulation of nucleotide hydrolyzing enzymatic activities and dysregulated lipid metabolic pathways.

Abstract Source:

J Ethnopharmacol. 2020 Feb 10 ;248:112358. Epub 2019 Oct 30. PMID: 31676404

Abstract Author(s):

Ochuko L Erukainure, Chika I Chukwuma, Motlalepula G Matsabisa, Veronica F Salau, Neil A Koorbanally, Md Shahidul Islam

Article Affiliation:

Ochuko L Erukainure


ETHNOPHARMACOLOGICAL RELEVANCE: Buddleja saligna Willd (Loganiaceae), mostly indigenous to South Africa is traditionally used in the treatment cardio-dysfunctional related ailments amongst other diseases.

AIMS: The cardio-protective effect of B. saligna was investigated in ferric-induced oxidative cardiopathy.

METHODS: Hearts harvested from healthy male SD rats were incubated with 0.1 mM FeSOto induce oxidative damage and co-incubated with B. saligna extract. Reaction mixtures without the extract served as negative control, while tissues without the extract or standard antioxidant (gallic acid) and pro-oxidant served as the normal control. The tissues were analyzed for levels of glutathione, malondialdehyde, and nitric oxide as well as cholinergic, angiotensin-converting enzyme (ACE), lipase, and purinergic enzymes activities, lipid profiles, fatty acid metabolic pathways and metabolites.

RESULTS: Induction of oxidative damage significantly (p < 0.05) depleted the levels of GSH, SOD, catalase, and ENTPDase activities, while concomitantly elevating the levels of MDA, NO, ACE, acetylcholinesterase, lipase and ATPase activities. These levels and activities were significantly reversed on treatment with B. saligna. Treatment with B. saligna also led to depletion of cardiac cholesterol and LDL-c levels, while elevating triglyceride and HDL-c level. It also depleted oxidative-induced lipid metabolites with concomitant generation of thirteen other metabolites. B. saligna also inactivated oxidative-induced pathways for beta oxidation of very long chain fatty acids, glycerolipid metabolism, and fatty acid elongation in mitochondria.

CONCLUSION: These results suggest that B. saligna protects against ferric-induced oxidative cardiopathy by mitigating oxidative stress, while concomitantly inhibiting ACE, acetylcholinesterase and lipase activities, and modulating lipid spectrum and dysregulated metabolic pathways.

Study Type : In Vitro Study

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.