n/a
Article Publish Status: FREE
Abstract Title:

Bufalin induces apoptosis in human esophageal carcinoma ECA109 cells by inhibiting the activation of the mTOR/p70S6K pathway.

Abstract Source:

Oncol Lett. 2018 Jun ;15(6):9339-9346. Epub 2018 Apr 18. PMID: 29805658

Abstract Author(s):

Yan Ding, Wei Liu, Xiaoling Wang, Lingling Zhang, Meng Zhao, Huiyan Deng, Yueping Liu

Article Affiliation:

Yan Ding

Abstract:

The present study examined whether bufalin could induce human esophageal carcinoma ECA109 cells apoptosis via inhibiting the activation of mechanistic target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) pathway is discussed in this article. The present study used the esophageal squamous cell carcinoma ECA109 cell line to assess the apoptosis-inducing effects of bufalin via inhibition of the mTOR/p70S6K pathways. A plasmid containing the wild-type mTOR gene (wtmTOR) was transfected into ECA109 cells. The levels of p70S6K, phosphorylated (p)-p70S6K, cellular inhibitor of apoptosis-1 (cIAP-1) and Bcl-2-associated death promoter (BAD) in ECA109 cells were examined by western blot analysis, and apoptosis was detected by flow cytometry analysis and Giemsa staining. The results revealed that the expression of p-p70S6K was increased as the time progressed (at 0, 12 and 24 h), and then decreased at 30, 36, 42 and 48 h after transfection. The expression of cIAP-1 was significantly decreased as time progressed following the addition of bufalin, whereas that of BAD was increased. The levels of p-p70S6K and cIAP-1 were significantly higher in the wtmTOR-transfected group than in the control and empty vector-transfected groups, and then reduced following addition of bufalin; however, BAD expression was significantly lower in the wtmTOR-transfected group. The results of flow cytometry revealed the cell cycle of ECA109 was arrested at G/M phase and the apoptotic rate was significantly lower in the wtmTOR-transfected group than in the control and empty vector-transfected groups, and then increased following addition of bufalin. In conclusion, the findings of the present study demonstrated that bufalin induced apoptosis in esophageal carcinoma cells via the inhibition of the mTOR/p70S6K pathway and indicated that treatment with bufalin could be combined with chemotherapy to overcome the resistance of esophageal carcinoma cells to chemotherapeutic-induced apoptosis.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Apoptotic : CK(6986) : AC(6931)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.