Article Publish Status: FREE
Abstract Title:

Bufalin Inhibits Cellular Proliferation and Cancer Stem Cell-Like Phenotypes via Upregulation of MiR-203 in Glioma.

Abstract Source:

Cell Physiol Biochem. 2017 Nov 23 ;44(2):671-681. Epub 2017 Nov 23. PMID: 29169175

Abstract Author(s):

Tao Liu, Chanji Wu, Guohu Weng, Zhongyan Zhao, Xiangying He, Chuanyi Fu, Zhiyan Sui, Shi-Xiong Huang

Article Affiliation:

Tao Liu


BACKGROUND/AIMS: Prior studies have shown that bufalin inhibits cellular proliferation and induces apoptosis in various human cancers. MicroRNA-203 (miR-203) has been shown to function as an important regulator of tumor progression at various stages. In this study, we investigated the effect of miR-203 expression and bufalin treatment on glioma cell proliferation and stem cell-like phenotypes.

METHODS: We used cell viability assay, colony formation assay, cell apoptosis assay and neurosphere formation assay to dectect the treatment effect of bufalin on U251 and U87 cells. Cells were transfected with the miR-203 mimic without bufalin treatment or cells were transfected with anti-miR-203 under bufalin treatment, the above expreiments were repeated. RT-PCR was employed to quantify miR-203 expression. Western blot was performed to detect the stem cell-like (CSC) markers, OCT4 and SOX2. Luciferase activity assay was used to determine whether the SPARC is the target of miR-203.

RESULTS: Bufalin treatment inhibited cell proliferation, colony formation, and CSC phenotypes and increased cell apoptosis and expression of miR-203. Furthermore, overexpression of miR-203 led to similar outcomes as bufalin treatment with respect to the cell viability, colony formation, cell apoptosis and the phenotypes of glioma cells. While anti-miR-203 attenuated the inhibitory effects of bufalin as promoting cell proliferation, colony formation and CSC phenotyes and inhibiting cell apoptosis. In addition, we identified SPARC as a novel target gene of miR-203.

CONCLUSIONS: These findings suggest that miR-203 plays an important role in bufalin's ability to inhibit the growth of glioma cells and the development of stem cell-like phenotypes.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.