Abstract Title:

Responses of tumorigenic and non-tumorigenic mouse lung epithelial cell lines to electrophilic metabolites of the tumor promoter butylated hydroxytoluene.

Abstract Source:

Chem Biol Interact. 2003 Mar 6;145(1):41-51. PMID: 12606153

Abstract Author(s):

Yude Sun, Lori D Dwyer-Nield, Alvin M Malkinson, Yan Ling Zhang, John A Thompson

Article Affiliation:

Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, 4200 East 9th Avenue Box C238, Denver, CO 80262, USA.


A model system to investigate the promotion phase of pulmonary carcinogenesis involves chronic exposure of carcinogen-initiated mice to the food additive, butylated hydroxytoluene (BHT). Previous studies strongly suggested that this activity is due to the cytochrome p450-catalyzed formation of quinone methides 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM) and 6-tert-butyl-2-(1',1'-dimethyl-2'-hydroxy)ethyl-4-methylenecyclohexa-2,5-dienone (BHTOH-QM). The effects of these electrophiles on non-tumorigenic C10 and E10 epithelial cell lines derived from a normal mouse lung explant were compared with effects on their corresponding neoplastic siblings, the A5 and E9 spontaneous transformants, respectively. The tumorigenic cells were more resistant to cell killing, with LC(50) values of 165-180 microM for BHT-QM and 12-22 microM for BHTOH-QM, versus LC(50) values in the non-tumorigenic cells of 105-118 microM and 5.0-6.0 microM, respectively. Constitutive glutathione (GSH) concentrations were 12-20 nmol/10(6) cells, and BHT-QM toxicity was enhanced>2-fold by depleting GSH with buthionine sulfoximine (BSO). Formation of the GSH conjugate of BHT-QM accounted for a substantial fraction of the cellular GSH lost by quinone methide exposure. Enhanced lipid peroxidation and superoxide formation occurred in all cell lines treated with BHT-QM, but both tumorigenic lines contained higher levels of GSH S-transferase and superoxide dismutase (SOD) activities. These data suggest the possibility that BHT-derived quinone methides may exert their promoting effects by inducing oxidative stress; such stress is better tolerated by tumorigenic cells, which have higher levels of antioxidant enzymes. Normal cells are destroyed more readily which allows neoplastic cells to expand their proliferation.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.