Abstract Title:

Carthamus tinctorius L. extract activates insulin-like growth factor-I receptor signaling to inhibit FAS-death receptor pathway and suppress lipopolysaccharides-induced H9c2 cardiomyoblast cell apoptosis.

Abstract Source:

Environ Toxicol. 2019 Dec ;34(12):1320-1328. Epub 2019 Sep 4. PMID: 31486215

Abstract Author(s):

Chun-Liang Tung, Da-Tong Ju, Bharath Kumar Velmurugan, Bo Ban, Tran D Dung, Dennis J-Y Hsieh, Vijaya P Viswanadha, Cecilia H Day, Yueh-Min Lin, Chih-Yang Huang

Article Affiliation:

Chun-Liang Tung


Carthamus tinctorius L. (Compositae) is used in Chinese medicine to treat heart disease and inflammation. In our previous study, we found that C. tinctorius L. inhibited lipopolysaccharides (LPS)-induced tumor necrosis factor-alpha (TNF-α) activation, JNK expression, and apoptosis in H9c2 cardiomyoblast cells. The present study was performed to investigate the protective effect of C. tinctorius extract (CTF) on LPS-challenged H9c2 myocardioblast cell and to explore the possible underlying mechanism. Cell viability assay showed that LPS treatment decreased the cell viability of H9c2 cell, whereas CTF treatment reversed LPS cytotoxicity in a dose-dependent manner, especially in the LPS + CTF 25 (μg/mL) group. LPS treatment-induced apoptosis was determined by transferase-mediated dUTP nick end labeling assay, and by Western blot. LPS-induced apoptotic bodies were decreased following CTF treatment. Expression of TNF-α, FAS-L, FAS, FADD, caspase-8, BID, and t-BID was significantly increased in LPS-treated H9c2 cells. In contrast, it was significantly suppressed by the administration of CTF extract. In addition, CTF treatment activates antiapoptotic proteins, Bcl-2 and p-Bad, and downregulates Bax, cytochrome-c, caspase-9, caspase-3, and apoptosis-inducing factor expression. Furthermore, CTF exerted cytoprotective effects by activating insulin-like growth factor-I (IGF-I) signaling pathway leading to downregulation of the apoptotic proteins involved in FAS death receptor pathway. In addition, AG1024 and IGF-I receptor (IGF-IR) inhibitor and siRNA silencing reverses the effect of CTF implying that CTF functions through the IGF-IR pathway to inhibit LPS-induced H9c2 apoptosis. These results suggest that treatment with CTF extract prevented the LPS-induced apoptotic response through IGF-I pathway.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.