n/a
Article Publish Status: FREE
Abstract Title:

Caffeine Neuroprotective Mechanism Againstβ-Amyloid Neurotoxicity in SHSY5Y Cell Line: Involvement of Adenosine, Ryanodine, and N-Methyl-D-Aspartate Receptors.

Abstract Source:

Adv Pharm Bull. 2017 Dec ;7(4):579-584. Epub 2017 Dec 31. PMID: 29399547

Abstract Author(s):

Mojtaba Keshavarz, Majid Reza Farrokhi, Atena Amiri

Article Affiliation:

Mojtaba Keshavarz

Abstract:

Purpose: Some reports have shown neuroprotective effects of caffeine in several neurodegenerative disorders. However, its mechanism of action is not completely clear. Therefore, the aim of this study was to explore the interference of ryanodine, N-methyl-D-aspartate (NMDA) and adenosine modulators with the neuroprotective effects of caffeine againstβ-amyloid (Aβ) neurotoxicity in the SHSY5Y cells. Methods: The SHSY5Y cells were treated with Aβ23-35 (20µM) and/or caffeine (0.6 and 1mM), or both for 24 hours. Adenosine (20, 40, 60, 80, 100µM), NMDA (20, 50, 70, 90µM), dantrolene (2, 4, 6, 8, 10µM) were also added to the medium and incubated for 24 hours. The cell viability was measured via the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) method. The data were analyzed using one-way ANOVA followed by Bonferroni test. Results: Caffeine at all the used concentrations (0.6, 0.8, 0.9, 1, and 3mM) significantly protected neuronal cells against Aβ neurotoxicity. Adenosine at the concentrations of 20, 40, 80 and 100μM diminished the neuroprotective effects of caffeine (0.6 and 1mM) against Aβ neurotoxicity. NMDA at the concentrations of 20, 50, 70 and 90μM blocked caffeine (0.6 and 1mM) neuroprotective effects. Dantrolene at the concentration of 2, 4, 6, 8 and 10μM diminished the neuroprotective effects of caffeine (0.6mM) and at the concentrations of 2 and 10μM impede caffeine (1mM) neuroprotection against Aβ neurotoxicity. Conclusion: Caffeine produced neuroprotective effect against Aβ neurotoxicity. Blockade of adenosine and NMDA receptors, as well as the activation of ryanodine receptors, may contribute to the neuroprotective effects of caffeine.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.