Abstract Title:

Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy.

Abstract Source:

Cancer Res. 2009 Dec 15 ;69(24):9245-53. PMID: 19951996

Abstract Author(s):

Anjali P Kusumbe, Sharmila A Bapat

Article Affiliation:

National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, India.


Tumor formation involves substantial cell division and genetic instability, but the relationship between quiescent cancer stem cells (CSC) and dividing progenitors in these events is poorly understood. Likewise, the implication of aneuploid cells in solid tumors is uncertain. CSCs are postulated to contribute to tumor dormancy and present a formidable obstacle in limiting treatment outcomes for a majority of cancers, whereas the genetic heterogeneity conjured by aneuploid cells may influence tumor drug resistance. However, direct confirmation of these events remains forthcoming. In the present study, we addressed the identification of tumor dormancy in terms of isolation of therapy-refractory residual tumor cells from tumors that persist in a state of quiescence as label-retaining cells. The choices of label were PKH67/PKH26 dyes that irreversibly bind to the lipid bilayer on cell membranes and get equally partitioned among daughter cells subsequent to each cell division. Consequent characterization revealed that label-retaining cells encompass two different populations capable of remaining in a state of quiescence, i.e., stem-like cells and aneuploid cells. The former express a reversibility of quiescence through retention of functionality and also exhibit therapeutic refractoriness; the latter seem to be either quiescent or proliferation-arrested at steady-state. Subsequent to exposure to selective pressure of chemotherapy, a fraction of these cells may acquire the potential to proliferate in a drug-refractory manner and acquire stem-like characteristics. Collectively, the findings of the present study reveal that tumor-derived CSCs and aneuploid populations contribute to drug resistance and tumor dormancy in cancer progression.

Study Type : Review

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.