n/a
Article Publish Status: FREE
Abstract Title:

Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome.

Abstract Source:

Life Sci. 2022 Dec 29:121334. Epub 2022 Dec 29. PMID: 36587789

Abstract Author(s):

Yung-Fong Tsai, Shun-Chin Yang, Yun-Hsuan Hsu, Chun-Yu Chen, Po-Jen Chen, Yu-Ting Syu, Ching-Hsiung Lin, Tsong-Long Hwang

Article Affiliation:

Yung-Fong Tsai

Abstract:

AIMS: Infiltration of activated neutrophils into the lungs is a hallmark of acute respiratory distress syndrome (ARDS). Neutrophilic inflammation, particularly neutrophil extracellular traps (NETs), is proposed as a useful target for treating ARDS. Carnosic acid (CA) is a food additive; however, its anti-neutrophilic activity in the treatment of ARDS has not been well established. The hypothesis of present study is to confirm that CA alleviates ARDS by suppressing neutrophilic inflammation and oxidative damage.

MAIN METHODS: Generation of superoxide anions and reactive oxygen species (ROS), induction of elastase degranulation, and formation of NETs by human neutrophils were assayed using spectrophotometry, flow cytometry, and immunofluorescent microscopy. Immunoblotting was performed to determine the cellular mechanisms involved. Cell-free radical systems were used to test antioxidant activities. The therapeutic effect of CA was evaluated in a lipopolysaccharide (LPS)-induced ARDS mouse model.

KEY FINDINGS: CA greatly reduced superoxide anion production, ROS production, elastase release, cluster of differentiation 11b expression, and cell adhesion in activated human neutrophils. Mechanistic studies have demonstrated that CA suppresses phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase in activated neutrophils. CA effectively scavenges reactive oxygen and nitrogen species, but not superoxide anions. This is consistent with the finding that CA is effective against ROS-dependent NET formation. CA treatment significantly improved pulmonary neutrophil infiltration, oxidative damage, NET formation, and alveolar damage in LPS-induced mice.

SIGNIFICANCE: Our data suggested the potential application of CA for neutrophil-associated ARDS therapy.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.