Abstract Title:

Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells.

Abstract Source:

Nanotechnology. 2017 Mar 7 ;28(13):135103. Epub 2017 Mar 7. PMID: 28266352

Abstract Author(s):

H J Hsu, R F Huang, T H Kao, B S Inbaraj, B H Chen

Article Affiliation:

H J Hsu


Lycium barbarum L., a traditional Chinese herb widely used in Asian countries, has been demonstrated to be protective against chronic diseases such as age-related macular degeneration. The objectives of this study were to determine the carotenoid content in L. barbarum by high-performance liquid chromatography-mass spectrometry, followed by preparation of a carotenoid nanoemulsion to evaluate the mechanism of inhibition on HT-29 colon cancer cells. The highest extraction yield of carotenoids was attained by employing a solvent system of hexane-ethanol-acetone (1:1:1, v/v/v). Nine carotenoids, including neoxanthin (4.47 μg g(-1)), all-trans-zeaxanthin and its cis-isomers (1666.3 μg g(-1)), all-trans-β-cryptoxanthin (51.69 μg g(-1)), all-trans-β-carotene and its cis-isomers (20.11 μg g(-1)), were separated within 45 min and quantified using a YMC C30 column and a gradient mobile phase of methanol-water (9:1, v/v) (A) and methylene chloride (B). A highly stable carotenoid nanoemulsion composed of Capryol(TM) 90, Transcutol(®)HP, Tween 80 and deionized water was prepared with a mean particle size of 15.1 nm. Characterization of zeaxanthin standard, blank nanoemulsion, carotenoid extract and carotenoid nanoemulsion by differential scanning calorimetry curves and Fourier transform infrared spectra revealed a good dispersion of zeaxanthin-dominated carotenoid extract with no significant chemical change after incorporation into nanoemulsion. The in vitro release kinetic study showed a higher release profile at pH 5.2 than at physiological pH 7.4, suggesting a rapid release of carotenoids in the acidic environment (pH 4.5-6.5) characteristic of tumors. Both the carotenoid nanoemulsion and the extract were effective at inhibiting growth of HT-29 colon cancer cells, with an IC50 of 4.5 and 4.9 μg ml(-1), respectively. Also, both treatments could up-regulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A and cyclin B expression and arrest the cell cycle at G2/M. The study may form a basis for further exploration of L. barbarum nanoemulsion in cancer treatment.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.