Abstract Title:

Cannabidiol, a Major Non-Psychotrophic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts.

Abstract Source:

J Bone Miner Res. 2015 Mar 19. Epub 2015 Mar 19. PMID: 25801536

Abstract Author(s):

Natalya M Kogan, Eitan Melamed, Elad Wasserman, Bitya Raphael, Aviva Breuer, Kathryn S Stok, Rachel Sondergaard, Ana V Villarreal Escudero, Saja Baraghithy, Malka Attar-Namdar, Silvina Friedlander-Barenboim, Neashan Mathavan, Hanna Isaksson, Raphael Mechoulam, Ralph Müller, Alon Bajayo, Yankel Gabet, Itai Bab

Article Affiliation:

Natalya M Kogan

Abstract:

Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femora from rats given a mixture of CBD and THC for 8 weeks were markedly increased by CBD. This effect is not shared byΔ(9) -tetrahydrocannabinol (THC, the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks post fracture followed by attenuation of the CBD effect at 8 weeks. Using μCT, the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier Transform Infrared Spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes. This article is protected by copyright. All rights reserved.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.