Abstract Title:

Choline-related supplements improve abnormal plasma methionine-homocysteine metabolites and glutathione status in children with cystic fibrosis.

Abstract Source:

Am J Clin Nutr. 2007 Mar;85(3):702-8. PMID: 17344490

Abstract Author(s):

Sheila M Innis, A George F Davidson, Stepan Melynk, S Jill James

Abstract:

BACKGROUND: Liver triacylglycerol accumulation and oxidative stress are common in cystic fibrosis (CF) and also occur in choline deficiency. Previously, we showed an association between elevated plasma homocysteine, reduced ratios of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) and of phosphatidylcholine to phosphatidylethanolamine, and phospholipid malabsorption in children with CF. OBJECTIVE: The objective was to address a possible relation between altered methionine-homocysteine metabolism and choline metabolism in children with CF. DESIGN: Children with CF were assigned without bias to supplementation with 2 g lecithin/d (n = 13), 2 g choline/d (n = 12), or 3 g betaine/d (n = 10) for 14 d. Plasma concentrations of methionine, adenosine, cysteine, cysteinyl-glycine, glutathione, glutathione disulfide (GSSG), and fatty acids; SAM:SAH; and red blood cell phospholipids were measured within each group of children with CF before and after supplementation. Plasma from healthy children without CF (n = 15) was analyzed to obtain reference data. RESULTS: Children with CF had higher plasma homocysteine, SAH, and adenosine and lower methionine, SAM:SAH, and glutathione:GSSG than did children without CF. Supplementation with lecithin, choline, or betaine resulted in a significant increase in plasma methionine, SAM, SAM:SAH, and glutathione:GSSG and a decrease in SAH (n = 35). Supplementation with choline or betaine was associated with a significant decrease in plasma SAH and an increase in SAM:SAH, methionine, and glutathione:GSSG. Supplementation with lecithin or choline also increased plasma methionine and SAM. CONCLUSION: We showed that dietary supplementation with choline-related compounds improves the low SAM:SAH and glutathione redox balance in children with CF.

Study Type : Human Study
Additional Links

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.