n/a
Abstract Title:

Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon.

Abstract Source:

Chronobiol Int. 2017 Oct 17:1-15. Epub 2017 Oct 17. PMID: 29039977

Abstract Author(s):

Lenka Polidarová, Pavel Houdek, Alena Sumová

Article Affiliation:

Lenka Polidarová

Abstract:

: Exposure to environmental conditions that disturb the daily rhythms has been shown to enhance the proinflammatory responses of immunostimulant-challenged immune system. However, it is not known whether circadian disturbances may stimulate unchallenged immune responses and thus contribute per se to the development of inflammation-related diseases. Our aim was to ascertain an effect of various conditions threatening the behavioral activity/rest cycle regulation, namely aging with or without melatonin, 6 h advance/delay phase shifts in the light/dark cycle repeated with a 2-day frequency and constant light, on expression of immune markers in the rat colon. The impact of these conditions on parameters of behavioral activity and mRNA levels of selected immune markers in the colonic mucosa of Wistar rats, namely TNFα (Tnf), IL1a (Il1a), IL17RA (Il17ra), STAT3 (Stat3) and Rgs16 (Rsg16), were detected. Our results demonstrate that aging with or without melatonin as well as repeated 6 h advance/delay phase shifts in the light/dark cycle, which increased inactivity as a correlate of sleep during the dark phase ofthe light/dark cycle (i.e. during the active phase for nocturnal animals), had a minor effect on immune state in the colonic mucosa; all these conditions caused downregulation of gene Rgs16 which is involved in attenuation of the inflammatory response in the colon but did not affect expression of the other immune markers. Interestingly, a long-term absence of melatonin facilitated the aging-induced effect on immune state in the colon. In contrast, exposure to constant light, which perturbed the interval of inactivity (sleep) and led to the complete abolishment of activity/inactivity cycles, activated robustly proinflammatory state in the colon selectively via Stat3-dependent pathway. In spite all these experimental conditions (aging with or without melatonin, shifts in light/dark cycles, constant light) perturbed the activity/rest cycles, none of them induced sleep deprivation. These results provided the first evidence that disruptions in the behavioral activity/inactivity cycles may spontaneously (without immuno-stimulant) induce selective proinflammatory responses in the colonic mucosa. Such effects may take part in the mechanisms of modern lifestyle-induced inflammatory diseases of the gut.

ABBREVIATIONS: B2M:β2-microglobulin; DSS: dextran sodium sulfate; Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Ifng: interferon g; Il1a: interleukin 1a; Il1b: interleukin 1b; Il2: interleukin 2; Il6: interleukin 6; Il17ra: interleukin 17 receptor a; LD: light/dark cycle; LL: constant light; LPS: lipopolysaccharide; Mntr1a: melatonin receptor 1a; PINX: pinealectomy; Rgs16: regulator of G protein signaling 16; RT qPCR: quantitative reverse transcription polymerase chain reaction; Stat3: signal transducer and activator of transcription 3; Th17: type 17 T helper cells; Tnfα: tumor necrosis factor α; Tnfrsf1b:tumor necrosis factor receptor superfamily member 1b.

Study Type : Animal Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.