Abstract Title:

Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition.

Abstract Source:

J Mol Med (Berl). 2015 Jul ;93(7):759-72. Epub 2015 Jun 11. PMID: 26062793

Abstract Author(s):

Min-Kyung Kang, Sin-Hye Park, Yean-Jung Choi, Daekeun Shin, Young-Hee Kang

Article Affiliation:

Min-Kyung Kang


UNLABELLED: Renal fibrosis is a crucial event in the pathogenesis of diabetic nephropathy (DN). The process known as epithelial to mesenchymal transition (EMT) contributes to the accumulation of matrix proteins in kidneys, in which renal tubular epithelial cells play an important role in progressive renal fibrosis. The current study investigated that chrysin (5,7-dihydroxyflavone) present in bee propolis and herbs, inhibited renal tubular EMT and tubulointerstitial fibrosis due to chronic hyperglycemia. Human renal proximal tubular epithelial cells (RPTEC) were incubated in media containing 5.5 mM glucose, 27.5 mM mannitol (as an osmotic control), or 33 mM glucose (HG) in the absence and presence of 1-20μM chrysin for 72 h. Chrysin significantly inhibited high glucose-induced renal EMT through blocking expression of the mesenchymal markers vimentin, α-smooth muscle actin, and fibroblast-specific protein-1 in RPTEC and db/db mice. Chrysin reversed the HG-induced down-regulation of the epithelial marker E-cadherin and the HG-enhanced N-cadherin induction in RPTEC. In addition, chrysin inhibited the production of collagen IV in tubular cells and the deposition of collagen fibers in mouse kidneys. Furthermore, chrysin blocked tubular cell migration concurrent with decreasing matrix metalloproteinase-2 activity, indicating epithelial cell derangement and tubular basement membrane disruption. Chrysin restored the induction of the tight junction proteins Zona occludens protein-1 (ZO-1) and occludin downregulated in diabetic mice. Chrysin inhibited renal tubular EMT-mediated tubulointerstitial fibrosis caused by chronic hyperglycemia. Therefore, chrysin may be a potent renoprotective agent for the treatment of renal fibrosis-associated DN.

KEY MESSAGES: • Glucose increases renal tubular epithelial induction of vimentin, α-SMA and FSP-1. • Glucose enhances renal EMT by blocking tubular epithelial E-cadherin expression. • Chrysin inhibits tubular EMT-mediated tubulointerstitial fibrosis in mouse kidneys. • Chrysin restores renal tubular induction of ZO-1 and occludin downregulated in diabetic mice. • Chrysin blocks glucose-induced renal tubular cell migration with reducing MMP-2 activity.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.