n/a
Article Publish Status: FREE
Abstract Title:

Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3.

Abstract Source:

Mol Oncol. 2016 11 ;10(9):1485-1496. Epub 2016 Aug 25. PMID: 27592281

Abstract Author(s):

Margaret Lois Thomas, Roberto de Antueno, Krysta Mila Coyle, Mohammad Sultan, Brianne Marie Cruickshank, Michael Anthony Giacomantonio, Carman Anthony Giacomantonio, Roy Duncan, Paola Marcato

Article Affiliation:

Margaret Lois Thomas

Abstract:

Breast cancer stem cells (CSCs) can be identified by increased Aldefluor fluorescence caused by increased expression of aldehyde dehydrogenase 1A3 (ALDH1A3), as well as ALDH1A1 and ALDH2. In addition to being a CSC marker, ALDH1A3 regulates gene expression via retinoic acid (RA) signaling and plays a key role in the progression and chemotherapy resistance of cancer. Therefore, ALDH1A3 represents a druggable anti-cancer target of interest. Since to date, there are no characterized ALDH1A3 isoform inhibitors, drugs that were previously described as inhibiting the activity of other ALDH isoforms were tested for anti-ALDH1A3 activity. Twelve drugs (3-hydroxy-dl-kynurenine, benomyl, citral, chloral hydrate, cyanamide, daidzin, DEAB, disulfiram, gossypol, kynurenic acid, molinate, and pargyline) were compared for their efficacy in inducing apoptosis and reducing ALDH1A3, ALDH1A1 and ALDH2-associated Aldefluor fluorescence in breast cancer cells. Citral was identified as the best inhibitor of ALDH1A3, reducing the Aldefluor fluorescence in breast cancer cell lines and in a patient-derived tumor xenograft. Nanoparticle encapsulated citral specifically reduced the enhanced tumor growth of MDA-MB-231 cells overexpressing ALDH1A3. To determine the potential mechanisms of citral-mediated tumor growth inhibition, we performed cell proliferation, clonogenic, and gene expression assays. Citral reduced ALDH1A3-mediated colony formation and expression of ALDH1A3-inducible genes. In conclusion, citralis an effective ALDH1A3 inhibitor and is able to block ALDH1A3-mediated breast tumor growth, potentially via blocking its colony forming and gene expression regulation activity. The promise of ALDH1A3 inhibitors as adjuvant therapies for patients with tumors that have a large population of high-ALDH1A3 CSCs is discussed.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.