n/a
Article Publish Status: FREE
Abstract Title:

Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy.

Abstract Source:

J Biomed Opt. 2014 Mar ;19(3):38001. PMID: 24638250

Abstract Author(s):

Ryan Spitler, Michael W Berns

Article Affiliation:

Ryan Spitler

Abstract:

Low-level light therapy has been shown to improve in vitro wound healing. However, well-defined parameters of different light sources for this therapy are lacking. The goal of this study was (1) to determine if the wavelengths tested are effective for in vitro wound healing and (2) to compare a laser and a light-emitting diode (LED) source at similar wavelengths. We show four wavelengths, delivered by either a laser or LED array, improved in vitro wound healing in A549, U2OS, and PtK2 cells. Improved wound healing occurred through increased cell migration demonstrated through scratch wound and transwell assays. Cell proliferation was tested by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-car-boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay and was found generally not to be involved in the wound healing process. The laser and LED sources were found to be comparable when equal doses of light were applied. The biological response measured was similar in most cases. We conclude that the laser at 652 (5.57  mW/cm2, 10.02  J/cm2) and 806 nm (1.30  mW/cm2, 2.334  J/cm2) (full bandwidth 5 nm), and LED at 637 (5.57  mW/cm2, 10.02  J/cm2) and 901 nm (1.30  mW/cm2, 2.334  J/cm2) (full bandwidth 17 and 69 nm respectively) induce comparable levels of cell migration and wound closure.

Study Type : In Vitro Study
Additional Links

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.