n/a
Abstract Title:

Cranberry Juice Polyphenols Inhibited the Formation of Advanced Glycation End Products in Collagens, Inhibited Advanced Glycation End Product-Induced Collagen Crosslinking, and Cleaved the Formed Crosslinks.

Abstract Source:

J Agric Food Chem. 2022 Dec 1. Epub 2022 Dec 1. PMID: 36455288

Abstract Author(s):

Haotian Chang, Elizabeth Johnson, Christina Khoo, Weixin Wang, Liwei Gu

Article Affiliation:

Haotian Chang

Abstract:

Collagens in the human skin are susceptible to glycation due to their long half-life of about 15 years, accumulating advanced glycation end products (AGEs). The formation of AGEs and the subsequent AGE-induced collagen crosslinking are major factors for skin aging. The objective of this study was to determine the capacity of cranberry juice polyphenols (CJPs) and their fractions to inhibit collagen glycation and to break AGE-induced crosslinks in collagens. Concentrated cranberry juice was extracted to obtain the CJP, which was further fractionated into an ethyl acetate fraction, water fraction, 30% methanol (MeOH) fraction, 60% MeOH fraction, MeOH fraction, and acetone fraction. CJPs and their fractions contained different ratios of anthocyanins, procyanidins, and flavonols. All the fractions significantly inhibited collagen glycation assessed with the collagen-methylglyoxal (MGO) or collagen-dehydroascorbic acid (DHAA) assays. The ethyl acetate fraction and 60% MeOH had the lowest ICvalues in the collagen-MGO and collagen-DHAA assays. The methanol fraction (IC= 0.52μg/mL) and acetone fraction (IC= 0.019 mg/mL) had the lowest ICvalues in the inhibition and breakage of AGE-induced collagen crosslinking, respectively. The ethyl acetate fraction significantly scavenged the highest amount of MGO and DHAA after incubation compared to the other fractions. Results suggested that procyanidins were the most effective antiglycation agent in both collagen glycation assays, followed by flavonols and anthocyanins. High-performance liquid chromatography-electrospray ionization─tandem mass spectrometry showed that the reactions of DHAA with quercetin or epicatechin formed several adducts with unreported proposed structures. This study suggested that CJPs may be used as active ingredients in cosmetics to prevent skin collagen glycation and crosslinking and to break the formed crosslinks.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.