Abstract Title:

Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats.

Abstract Source:

Amino Acids. 2016 Jan 19. Epub 2016 Jan 19. PMID: 26781304

Abstract Author(s):

Rafael Deminice, Paola Sanches Cella, Camila S Padilha, Fernando H Borges, Lilian Eslaine Costa Mendes da Silva, Patrícia L Campos-Ferraz, Alceu Afonso Jordao, Jason Lorne Robinson, Robert F Bertolo, Rubens Cecchini, Flávia Alessandra Guarnier

Article Affiliation:

Rafael Deminice


The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P < 0.05) in tumor mass coincided with a progressively lower body weight and higher hepatic oxidative stress; plasma Hcy concentration was 80 % higher (P < 0.05) by 10 days of tumor implantation. Impaired Hcy metabolism was evidenced by decreased hepatic betaine-homocysteine methyltransferase (Bhmt), glycine N-methyltransferase (Gnmt) and cystathionine beta synthase (CBS) gene expression. In contrast, creatine supplementation promoted a 28 % reduction of tumor weight (P < 0.05). Plasma Hcy (C 6.1 ± 0.6, T 10.3 ± 1.5, TCr 6.3 ± 0.9, µmol/L) and hepatic oxidative stress were lower in the TCr group compared to T. Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.