Abstract Title:

Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1.

Abstract Source:

Oncol Rep. 2006 Jun;15(6):1557-62. PMID: 16685395

Abstract Author(s):

Moon-Kyoung Bae, Se-Hee Kim, Joo-Won Jeong, You Mie Lee, Hae-Sun Kim, Su-Ryun Kim, Il Yun, Soo-Kyung Bae, Kyu-Won Kim

Article Affiliation:

College of Dentistry, Pusan National University, Busan 602-739, Korea.


Hypoxia-inducible factor-1 (HIF-1) has a central role in cellular responses to hypoxia, including the transcriptional activation of a number of genes involved in angiogenesis in tumors. We found that curcumin, a natural, biologically active compound isolated from the commonly used spice turmeric, significantly decreases hypoxia-induced HIF-1alpha protein levels in HepG2 hepatocellular carcinoma cells. Moreover, curcumin suppressed the transcriptional activity of HIF-1 under hypoxia, leading to a decrease in the expression of vascular endothelial growth factor (VEGF), a major HIF-1 target angiogenic factor. Curcumin also blocked hypoxia-stimulated angiogenesis in vitro and down-regulated HIF-1alpha and VEGF expression in vascular endothelial cells. These findings suggest that curcumin may play pivotal roles in tumor suppression via the inhibition of HIF-1alpha-mediated angiogenesis.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.