Abstract Title:

Curcumin activates the aryl hydrocarbon receptor yet significantly inhibits (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa.

Abstract Source:

Trop Med Int Health. 2010 Oct;15(10):1148-55. Epub 2010 Aug 17. PMID: 12359752

Abstract Author(s):

Anthony L Rinaldi, Mark A Morse, Henry W Fields, David A Rothas, Ping Pei, Kapila A Rodrigo, Robert J Renner, Susan R Mallery

Article Affiliation:

College of Dentistry, Departments of Orthodontics and Oral Maxillofacial Surgery and Pathology, Ohio State University, Columbus, Ohio 43218, USA.


The development of oral squamous cell carcinoma (SCC) shows a positive correlation with the carcinogen exposure that occurs during tobacco and alcohol use. The purpose of this study was to investigate whether the naturally occurring chemopreventive agent, curcumin, modulates expression and function of carcinogen- metabolizing enzymes in human keratinocytes isolated from oral SCC tumors. Dose-response studies demonstrated that curcumin concentrations of>or=25 micro M were cytotoxic for oral SCC cells. Curcumin increased both expression (reverse transcription-PCR analyses) and function (high-performance liquid chromatography determination of ethoxyresorufin metabolism) of cytochrome P-450 (CYP) 1A1 and/or CYP1B1. The aryl hydrocarbon receptor (AhR), which up-regulates a battery of genes associated with carcinogen metabolism, is activated by polycyclic aromatic hydrocarbons such as the tobacco-associated carcinogen benzo(a)pyrene. Electromobility shift assays demonstrated that similar to the established AhR ligand 2,3,7,8,-tetrachlorodibenzo-p-dioxin, curcumin inclusion resulted in AhR nuclear translocation and formation of the transcriptionally active AhR-aryl hydrocarbon receptor nuclear translocator complex. Cellular capacity to bioactivate the tobacco-associated carcinogen (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiodiol was determined by evaluating conversion of the carcinogenic metabolite diol epoxide to stable tetrols via high-performance liquid chromatography. Results of our metabolism studies showed that curcumin significantly inhibited CYP1A1-mediated benzo(a)pyrene diol bioactivation in both oral SCC cells and intact oral mucosa. Because CYP1A1 is one of the primary carcinogen-activating enzymes in oral mucosa, the use of curcumin as an oral cavity chemopreventive agent could have significant clinical impact via its ability to inhibit carcinogen bioactivation.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.