Abstract Title:

Suicide for survival--death of infected erythrocytes as a host mechanism to survive malaria.

Abstract Source:

Cell Physiol Biochem. 2009;24(3-4):133-40. Epub 2009 Aug 3. PMID: 19710527

Abstract Author(s):

Michael Föller, Diwakar Bobbala, Saisudha Koka, Stephan M Huber, Erich Gulbins, Florian Lang

Article Affiliation:

Department of Physiology, University of Tübingen, Tübingen, Germany.


The pathogen of malaria, Plasmodium, enters erythrocytes and thus escapes recognition by the immune system. The pathogen induces oxidative stress to the host erythrocyte, which triggers eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are identified by macrophages which engulf and degrade the eryptotic cells. To the extent that infected erythrocytes undergo eryptosis prior to exit of Plasmodiaand subsequent infection of other erythrocytes, the premature eryptosis may protect against malaria. Accordingly, any therapeutical intervention accelerating suicidal death of infected erythrocytes has the potential to foster elimination of infected erythrocytes, delay the development of parasitemia and favorably influence the course of malaria. Eryptosis is stimulated by a wide variety of triggers including osmotic shock, oxidative stress, energy depletion and a wide variety of xenobiotics. Diseases associated with accelerated eryptosis include sepsis, haemolytic uremic syndrome, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency and Wilson's disease. Among the known stimulators of eryptosis, paclitaxel, chlorpromazine, cyclosporine, curcumin, PGE2 and lead have indeed been shown to favourably influence the course of malaria. Moreover, sickle-cell trait, beta-thalassemia trait, glucose-6-phosphate dehydrogenase (G6PD)-deficiency and iron deficiency confer some protection against a severe course of malaria. Importantly, counteracting Plasmodia by inducing eryptosis is not expected to generate resistance of the pathogen, as the proteins involved in suicidal death of the host cell are not encoded by the pathogen and thus cannot be modified by mutations of its genes.

Study Type : Review

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.